
www.manaraa.com

www.manaraa.com

SOFTWARE ENGINEERING TECHNIQUES:
DESIGN FOR QUALITY

www.manaraa.com

IFIP - The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the First World
Computer Congress held in Paris the previous year. An umbrella organization for
societies working in information processing, IFIP's aim is two-fold: to support
information processing within its member countries and to encourage technology transfer
to developing nations. As its mission statement clearly states,

IFIP's mission is to be the leading, truly international, apolitical
organization which encourages and assists in the development,
exploitation and application of information technology for the benefit
of all people.

IFIP is a non-profitmaking organization, run almost solely by 2500 volunteers. It operates
through a number of technical committees, which organize events and publications.
IFIP's events range from an international congress to local seminars, but the most
important are:

• The IFIP World Computer Congress, held every second year;
• Open conferences;
• Working conferences.

The flagship event is the IFIP World Computer Congress, at which both invited and
contributed papers are presented. Contributed papers are rigorously refereed and the
rejection rate is high.

As with the Congress, participation in the open conferences is open to all and papers may
be invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a working
group and attendance is small and by invitation only. Their purpose is to create an
atmosphere conducive to innovation and development. Refereeing is less rigorous and
papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World
Computer Congress and at open conferences are published as conference proceedings,
while the results of the working conferences are often published as collections of selected
and edited papers.

Any national society whose primary activity is in information may apply to become a full
member of IFIP, although full membership is restricted to one society per country. Full
members are entitled to vote at the annual General Assembly, National societies
preferring a less committed involvement may apply for associate or corresponding
membership. Associate members enjoy the same benefits as full members, but without
voting rights. Corresponding members are not represented in IFIP bodies. Affiliated
membership is open to non-national societies, and individual and honorary membership
schemes are also offered.

www.manaraa.com

SOFTWARE ENGINEERING
TECHNIQUES: DESIGN
FOR QUALITY

Edited by

Krzysztof Sacha
Software Engineering Group
Institute of Control & Computation Engineering
Warsaw University of Technology
Warsaw, Poland

Spri ringer

www.manaraa.com

Library of Congress Control Number: 2006931705

Software Engineering Techniques: Design for Quality

Edited by K. Sacha

p. cm. (IFIP International Federation for Information Processing, a Springer Series in
Computer Science)

ISSN: 1571-5736 / 1861-2288 (Internet)
ISBN: 10: 0-387-39387-0
ISBN: 13: 9780-387-39387-0
elSBN: 10:0-387-39388-9

Printed on acid-free paper

Copyright © 2006 by International Federation for Information Processing.
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, seiTice marks and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

9 8 7 6 5 4 3 2 1
springer.com

www.manaraa.com

PREFACE

The aim of software engineering is to find methods for developing high quahty
software products at a reasonable cost. As more and more computers are being used
in areas in which a malfunction of the system can be a source of serious losses or
disturbances to the functioning of the society, the quality of software becomes more
and more critical factor of business success, human security and safety. Examples
of such application areas are enterprise management, public administration, social
insurance or post delivery services. The quality of services offered to the society de
pends on the quality of software systems that support the functioning of the respective
public or private organizations (service providers).

Software engineering consists of a selection of methods and techniques that vary
from project to project and evolve in time. The purpose of this volume is to provide
an overview of the current work in software development techniques that can help
with enhancing the quality of software. The chapters of the volume, organized by key
topic area, create an agenda for the IFIP Working Conference on Software Engineering
Techniques SET 2006, held October 17-20, 2006 in Warsaw. The seven sections of
the volume address the following areas and particular topics:

Software architectures. Methods for structuring the software in order to promote
dependability and modifiability, component-based software development, aspect-ori
ented architectures, distributed and Internet applications.

Modeling. UML-based modeling of component systems, model transformation,
semi-formal and formal modeling of software systems using of Petri nets, queuing
network models and algebraic calculus.

Project management. Organization-wide process improvement, risk evaluation,
modeling and management.

Software Quality. Quality specification and evaluation, user involvement in the
quality improvement process, case study.

Analysis and verification methods. Test processes, test automation, test case
development and test generation, mutation testing versus aspectoriented response
injection, analysis and testing of Java programs, verification of UML state diagrams,
headingsddfootoempty venfooteempty

Data management. Knowledge base system engineering, data warehouses and
data quality monitoring and maintenance.

Software maintenance. Software refactoring, structuring of Java programs, legacy
applications in Web based systems, security problems.

I would like to thank all authors and reviewers who, at the end of the day, create
what this is all about.

Krzysztof Sacha Warsaw, July 2006

www.manaraa.com

Reviewers

Vincenzo Ambriola, Italy
Uwe Assmann, Sweden
Maria Bielikova, Slovakia
Stefan Biffl, Austria
Judith Bishop, South Africa
Paul Clements, USA
Zbigniew Czech, Poland
Jaroslaw Deminet, Poland
Tharam Dillon, Australia
Avram Eskenazi, Bulgaria
Marcelo Frias, Argentina
Janusz Gorski, Poland
Christine Hofmeister, USA
Heinrich Hussmann, Germany
Zbigniew Huzar, Poland
Kai Koskimies, Finland
Henryk Krawczyk, Poland
Ludwik Kuzniarz, Sweden
Anne-Fran9oise Le Meur, France
Claus Lewerentz, Germany
Antonia Lopes, Portugal
Leszek Maciaszek, Australia
Jan Madey, Poland
Lech Madeyski, Poland
Jan Magott, Poland

Andrzej Marciniak, Poland
Zygmunt Mazur, Poland
Marek Milosz, Poland
Gilles Motet, France
Jerzy Nawrocki, Poland
Bartosz Nowicki, Poland
Mauro Pezze, Italy
Erhard Ploedereder, Germany
Klaus Pohl, Germany
Saulius Ragaisis, Lithuania
Felix Redmil, UK
Karel Richta, Czech Republic
Henryk Rybinski, Poland
Andy Schiirr, Germany
Nikola Serbedzija, Germany
Andrzej Stasiak, Poland
Doaitse Swierstra, The Netherlands
Stanislaw Szejko, Poland
Bartosz Walter, Poland
Andrzej Wardzinski, Poland
Heike Wehrheim, Germany
Lilianna Wierzchon, Poland
Bogdan Wiszniewski, Poland
Jaroslav Zendulka, Czech Republic

www.manaraa.com

Table of Contents

Preface v

Software architectures and implementation technologies
From Hubs Via Holons to an Adaptive Meta-Architecture - the "AD-HOC" Approach

Leszek A. Maciaszek 1

A C++ Workbench with Accurate Non-Blocking Gai'bage Collector for Server Side
Internet Applications

Piotr Kotaczkowski, Ilona Bluemke 15

Scenario-based Component Behavior Filtration
Yan Zhang, Xiaofeng Yu, Tian Zhang, Xuandong Li, Guoliang Zheng 25

Mobile Ambients in Aspect-Oriented Software Architectures
Nour All, Jennifer Perez, Cristobal Costa, Isidro Ramos, Jose A. Carsi 37

The architecture of distributed systems driven by autonomic patterns
Marcin Wolski, Cezary Mazurek, Pawel Spychata, Aleksander Sumowski 49

Modeling
An optimizing OCL Compiler for Metamodeling and Model Transformation
Environments

Gergely Mezei, Tihamer Levendovszky, Hassan Charaf 61

Crossing the Borderline - From Formal to Semi-Formal Specifications
Andreas Bollin 73

Modeling of Component-Based Self-Adapting Context-Aware Applications for Mobile
Devices

Kurt Geihs, Mohammad U. Khan, Roland Reichle, Amor Solberg, Svein Hallsteinsen 85

A Performance Analysis Infrastructure for Component-Based System Hosted by
Middleware

Yong Zhang, Too Huang, Jun Wei, Ningjiang Chen 97

Estimation of mean response time of multi-agent systems
Tomasz Babczyriski, Jan Magott . 109

Integrated Approach to Modelling and Analysis using RTCP-nets
Marcin Szpyrka, Tomasz Szmuc 115

Hybrid modeling and verification of Java based software
Konrad Kutakowski 121

Project management
An evolutionary approach to project management process improvement for
software-intensive projects

Pawel Pierzchalka 127

Improved Bayesian Networks for Software Project Risk Assessment Using Dynamic
Discretisation

Norman Fenton, tukasz Radliiiski, Martin Neil 139

www.manaraa.com

viii Table of Contents

Software Risk Management: a Process Model and a Tool
Tereza G. Kirner, Lourdes E. Gongalves 149

Software Quality
An Approach to Software Quality Specification and Evaluation (SPoQE)

Iwona Dubielewicz, BogumUa Hnatkowska, Zbigniew Huzar, Lech Tuzinkiewicz . . 155

Feedback from Users on a Software Product to Improve Its Quality in Engineering
Applications

Barbara Begier, Jacek Wdowicki 167

Reaching and Maintaining High Quality of Distributed J2EE Applications-BeesyCluster
Case Study

Pawel Czarnul 179

Verification methods
Automatic software validation process

Maciej Dorsz, Mariusz Wasielewski 191

j2eeprof - a tool for testing multitier applications
Pawel Klaczewski, Jacek Wytrqbowicz 199

An Analysis of Use Case Based Testing Approaches Based on a Defect Taxonomy
Timea Hies, Barbara Paech 211

Minimizing Test Execution Time During Test Generation
Tilo Milcke, Michaela Huhn 223

An Integrated Regression Testing Framework to Multi-Threaded Java Programs
Bixin Li, Yancheng Wang, LiLi Yang 237

DynAlloy as a Formal Method for the Analysis of Java Programs
Juan P. Galeotti, Marcelo F. Frias 249

Verification of UML State Diagrams Using Concurrent State Machines
Jerzy Miescicki 261

Aspect-oriented Response Injection: an Alternative to Classical Mutation Testing
Bartosz Bogacki, Bartosz Walter 273

Advanced mutation operators applicable in C# programs
Anna Derezinska 283

Data management
An Open Platform of Data Quality Monitoring for ERP Information Systems

Pawel Sieniawski, Bogdan Trawinski 289

Managing Data from Heterogeneous Data Sources Using Knowledge Layer
Krzysztof Goczyta, Teresa Zawadzka, Michal Zawadzki 301

Checkpoint-based resumption in data warehouses
Marcin Gorawski, Pawel Marks 313

Software maintenance
A C-̂ + Refactoring Browser and Method Extraction

Marian Vittek, Peter Borovansky, Pierre-Etienne Moreau 325

www.manaraa.com

Table of Contents ix

ESC/Java2 as a Tool to Ensure Security in the Source Code of Java Applications
Aleksy Schubert, Jacek Chrzqszcz 337

Formalizing Software Refactoring in the Distributed Environment by aedNLC Graph
Grammar

Leszek Kotulski, Adrian Nowak 349

Minik: A Tool for Maintaining Proper Java Code Structure
Jacek Chrzqszcz, Tomasz Stachowicz, Andrzej Gqsienica-Samek, Aleksy Schubert . . 361

Multidimensional Legacy Aspects of Modernizing Web Based Systems
Henryk Krawczyk, Konrad Dusza, Lukasz Budnik, Lukasz Byczkowski 373

www.manaraa.com

From Hubs Via Holons to an
Adaptive Meta-Architecture - tlie "AD-HOC" Approach

Leszek A. Maciaszek

Macquarie University, Department of Computing,
NSW 2109, Sydney, Australia

leszek@ics.mq.edu.au

Abstract. The ever increasing sophistication of software systems brings with it
the ever increasing danger of humans losing conti'ol over their own creations.
This situation, termed the 'software crisis', is said to have existed since the
early days of software engineering and has been characterized by the inability
of software developers to produce adaptive systems. This paper addresses the
roots of the software crisis - the software cognitive and structural complexity
and how it could be conquered through the imposition of a meta-architecture on
software solutions. The meta-architecture, called PCBMER, epitomizes some
important characteristics of holons and holarchies underpinning the structure
and behavior of living systems.

1 Introduction

An adaptive system has an ability to change to suit different conditions; an ability to
continue into the future by meeting existing fimctional and nonfunctional
requirements and by adjusting to accommodate any new and changing requirements.
Adaptiveness is an overriding software quaUty that consists of a triple of critically
important sub qualities - understandabiiity, maintainability, extensibility.

There are three principal underpinnings to achieving adaptive solutions [9]. The
first underpinning is the prior existence of a meta-architecture (framework) to guide
architects in doing their job of constructing architectural models for a particular
software system. The second underpinning to achieving adaptive solutions is an
enforcement of sound engineering principles. If the architectural design defines
adaptiveness, the engineering principles deliver adaptiveness. The third underpinning
to achieving adaptive solutions is an enforcement of sound managerial practices.
Managerial practices verify adaptiveness.

This paper addresses the first underpinning to achieving adaptive software systems.
The paper introduces and explains a meta-architecture called PCBMER that extends
earlier meta-architectures proposed by the author, of which the last is known as the
PCMEF framework (e.g. [10, 11]).

The acronym "AD-HOC" refers to our research aimed at modeling spft\vare
systems on the image of living systems. This research started more than a decade ago
with the papers [12, 13]. The research was then channeled to industry projects,
elaborated in successive experiments and papers, applied in the textbooks [10, 11],

Please use the following format when citing this chapter:

Maciaszek, L.A., 2006, in IFIP Intemational Federation for Information Processing, Volume 227, Soitware Engineering
Tedmiques: Design for Quality, ed K. Sacha, (Boston: Springer), pp. 1-13.

www.manaraa.com

2 Leszek A. Maciaszek

and it is now finding its way to a monograph still in writing during this manuscript
preparation [9]. Originally, the "AD-HOC" acronym stood for Application
Development - Holon-Object-Centric approach. The preferred meaning now is
Application Development - Holons, Objects, Components.

2 Complexity in the wires

The complexity of modem enterprise and e-business systems is in the wires - in the
linkages and communication paths between software modules rather than in the
internal size of the modules. The communication paths create dependencies between
distributed components that may be difficult to understand and manage (a software
object A depends on an object B, if a change in B necessitates a change in A).

Software adaptiveness is a function of the software cognitive and structural
complexity (e.g. [4]). It is a function of the ease with which we can understand the
software flow of logic and any resulting dependencies.

2.1 Networks

Fig.l shows a possible system in which objects in various packages (components,
subsystems) communicate indiscriminately. This creates a network of
intercommunicating objects. The complexity of such systems grows exponentially
with the addition of new objects. Even if the complexity within packages can be
controlled by limiting the size of the packages, the complexity created by inter-
package communication links grows exponentially with the introduction of more
packages. The growth is exponential not necessarily because of the actual
dependencies between objects, but because the flat network structure (with no clearly
defined restrictions on coiranunication paths between objects) creates potential
dependencies between any (all) objects in the system. A change in an object can
potentially impact (can have a ''ripple effect" on) any other object in the system.

Assuming unrestricted origin/destination communication links (i.e. allowing both-
directional dependencies between objects), the cumulative measure of object
dependencies is given by a simple formula:

„^,CCD = n{n-\) (1)

where n is the number of objects (nodes in the graph) and ^^^^CCD is a cumulative

class dependency in a fiilly connected network (assuming that objects refer to
classes).

The formula computes the worst potential complexity, where each object can

potentially communicate with all other objects. For 17 classes in Fig.l, ^^^CCD is

equal to 272 (17*16). Although the worst scenario is unlikely in practice, it must be
assumed in any dependency impact analysis conducted on the system (simply because
real dependencies are not known beforehand). Systems permitting an indiscriminate
network of intercommunicating objects are considered not adaptive.

www.manaraa.com

From Hubs Via Holons to an Adaptive Meta-Architecture - the "AD-HOC" Approach

Package A

Package B

Package C

Fig. 1. Network of intercommunicating objects

2.2 Networks with hubs

The exponential growth of complexity in flat network structures is not acceptable. We
need to have software architectural solutions that result in merely polynomial
complexity growth when new objects/components are added. Such architectural
solutions consist of meta-models, frameworks, principles, patterns, etc. At the most
generic level, the reduction of complexity can be achieved through so called hub
structures [3].

Fig.2 shows how the complexity of a system can be reduced by introducing hubs.
Each package defines a hub - an interface object (this could be a Java-style interface
or so called dominant class) through which ah communication with the package is
channeled. Despite the introduction of three extra hub objects, the complexity of the
system in Fig.2 is visibly reduced in comparison with the same system in Fig.l.

More formally, the cumulative measure of object dependencies with hubs between
packages but with still unrestricted origin/destination communication links within
packages is given by the formula:

hubnet CCD^Y^{n,{n,-l)) + {h{h-\))
(2)

!=1

where n is the number of objects in each package plus the hub object, h is the number

of hubs (i.e. the number of packages) and ̂ ^^^^^CCD is a cumulative class

dependency in a hub network. For 17 classes and 3 hubs, f^^^^^f CCD is equal to 120.

www.manaraa.com

Leszek A. Maciaszek

Package A

Fig. 2. Reduction of complexity owing to hubs (interfaces) between packages

2.3 Hierarchies with hubs

For the flat network structm-es, the best complexity values can be obtained in a hub-
spoke structure, not discussed here [3]. However, in general, any network is a
hopeless structure. All complex systems that are adaptive take the form of a
hierarchy, or rather a holarchy (ref. Section 2). A hierarchy/holarchy consists of
hierarchically organized layers of objects with one-way (asymmetrical) dependencies
between the layers.

Fig.3 shows a hierarchical structure with hubs and downward only dependencies
between subsystems. Objects are grouped into subsystems instead of packages
(subsystems A-C mirror the structure of packages A-C in Fig.2). Subsystems are more
appropriate here because the notion of the subsystem (at least in the UML sense)
encapsulates some part of the intended system behavior, i.e. a client object must ask
the subsystem itself (represented by a hub object) to fulfill the behavior. The notion of
the package does not have such semantics [10].

The dependencies between subsystems are only downwards and the dependencies
within subsystems have no cycles [11]. Any upward communication between
subsystems is realized by a "dependency-less" loose coupling facilitated by interfaces
placed in lower subsystems but implemented in higher-level subsystems and/or by
event processing instead of message passing and/or by the use of XML-based meta-
level teclmologies. Similarly, cycles within subsystems are eliminated by using
interfaces, but also through refactoring techniques that extract circularly-dependent
functionality into separate objects/components.

The complexity formula for hierarchies with hubs is:

hubhier CCD
^'o,(o,-l) '^ (3)

i=l y=i

www.manaraa.com

From Hubs Via Holons to an Adaptive Meta-Architecture - the "AD-HOC" Approach 5

where:

• O is the number of objects in each subsystem i including any hub objects,

• p j^^ is the number of objects in each directly adjacent subsystem above any leave

subsystem minus any hub object (this computes the number of potential downward
paths to all hub objects in the adjacent subsystems),

hubhier^^^^^ a Cumulative class dependency in a hub hierarchy (and and

assuming as before that objects refer to classes).

Fig. 3. Reduction of complexity in a hierarchy with hubs

Comparing between Fig.3 and Fig.2, ;,„j;,,.ĝ CCD is equal 63 whereas ;,„̂ „̂ ^ CCD is

equal 120. The overall ĵ̂ ^ ,̂.̂ ^ CCD for the model in Fig.3 is equal 111 (63 for

subsystems A-C plus 48 for the remaining subsystems).

3 Holons and holarchies

The complexity of living systems by far exceeds the complexity of any man-made
system. This observation is easily validated by a simple fact that many intricacies of
living organisms escape human understanding. Despite of, or rather owing to, this
complexity - living systems are able to adapt to changing environments and evolve in

www.manaraa.com

6 Leszek A. Maciaszek

the process. Therefore, it seems sensible to study the structure and behaviour of hving
organisms in search for paradigms of use in the construction of software solutions.

Living systems are organized to form multi-leveled structures, each level
consisting of subsystems which are wholes in regard to their parts, and parts with
respect to the larger wholes. Thus molecules combine to form organelles, which in
turn combine to form cells. The cells form tissues and organs, which themselves form
larger systems, like the digestive system or the nervous system. These, finally,
combine to form the living person; and the 'stratified order' does not end there. People
form families, tribes, societies, nations. All these entities - irom molecules to human
beings, and on to social systems - can be regarded as wholes in the sense of being
integrated structures, and also as parts of larger wholes at higher levels of complexity.

Arthur Koestler [5] has coined the word holoit (irom the Greek word: holos =
whole and with the suffix on suggesting a part, as in neutron or proton) for these
entities which are both wholes and parts, and which exhibit two opposite tendencies:
an integrative tendency to fUnction as pai1 of the larger whole, and a self assertive
tendency to preserve its individual autonomy. Koestler uses the term holarchy (or
holocracy) to name a hierarchy of holons fi^om one point of development to another.
Fig.4 represents a possible mental picture of a holarchy. Looking downward, a holon
is something complete and unique, a whole. Looking upward, a holon is an
elementary component, a part. The diagram captures tlie essence of holons as defined
by Koestler: "Generally speaking, a holon on the M level of the hierarchy is
represented on the In+ll level as a unit and triggered off as a unit. Or, to put it
differently: the holon is a system of relations which is represented on the next higher
level as a unit, i.e., a relatum." [5, p.72].

Fig. 4. A holarchy

Individual holons within a holarchy are represented by four main characteristics:
(1) their internal charter (interactions between them can form unique patterns), (2)

www.manaraa.com

From Hubs Via Holons to an Adaptive Meta-Architecture - the "AD-HOC" Approach 7

self-assertive aggregation of subordinate holons, (3) an integrative tendency with
regard to superior holons, and (4) relationships with their peer holons.

Holarchies do not operate in isolation, but interact with others. "Thus the
circulatory system controlled by the heart and the respiratoiy system controlled by the
lungs function as quasi-autonomous, self-regulating hierarchies, but they interact on
various levels." [7, p.463]. Koestler uses the term arborization for vertical structures
and reticulation for horizontal net formations between holarchies.

Behavior of holarchies is defined by fixed rules wad flexible strategies. The rules
are referred to as the system's canon that determines its invariant properties - its
structural configuration and/or functional pattern. "The canon represents the
constraints imposed on any rule-governed process or behaviour. But these constraints
do not exhaust tlie system's degrees of freedom; they leave room for more or less
flexible strategies, guided by the contingencies in the holon's local environment. ...
In acquired skills like chess, the rules of the game define the permissible moves, but
the strategic choice of the actual move depends on the environment - the distribution
of the chessmen on the board." [6, pp.293-294].

Since the concept of holon was introduced by Koestler in [5], it has been used by
various branches of science ranging Irom biology via communication theory to more
practical uses for implementation of holonic manufacturing systems [16]. Holons and
holarchies offer great architectural and other solution ideas for implementing software
systems. Successful systems tend to resemble holarchies in many of their aspects,
including the ability to hide complexity in successively lower layers, whilst providing
greater levels of abstraction within the higher layers of their structures.

The space limitations do not allow us to discuss software technologies (some
established, other emerging) that parallel various holon ideas [9]. Most interesting
parallels seem to be:

1. Arborization -> object composition (e.g. the GoF composite pattern).
2. Reticulation -^ weaving in aspect-oriented programming.
3. Fixed rules -^ meta-architectures.
4. Flexible strategies -> autonomous agents in multi-agent systems.

4 Dependencies

Our goal is to minimize code dependencies through skillful architectural design. A
necessary condition to understand a system behavior is to identify object
dependencies and measure ripple effects that they may cause. A ripple effect of a
dependency is a chain reaction that a change to a supplier object may cause on all
client objects that directly or indirectly depend on the supplier.
In simple systems, the ripple effect can be determined by the analysis of actual
dependencies in the code. But even in simple systems, finding all actual dependencies
may be difficult if some suppliers of services are chosen dynamically at run-time and
are, therefore, unknown at compile-time (i.e. not directly visible in the source code).
It follows that the ripple effect, for all but very simple systems, needs to be
determined by the analysis of all potential dependencies in the code, i.e.
dependencies that are allowed by the architectural design of the system, whether or

www.manaraa.com

8 Leszek A. Maciaszek

not they actually exist (and assuming that architectural design is adhered to in the
implemented code). Fig.5 provides a classification of dependency relationships
relevant to the discussion in this chapter.

Fig. 5. Dependencies

A hierarchical architectural structure is undefined unless we determine precisely
what dependencies are allowed between hierarchy layers and within the layers, and
what their potential ripple effect is. These are architecture-managed dependencies
that are under complete control of system developers.

However, application software is implemented using particular system software
and applying particular development technology (application servers, databases,
libraries, etc.). The system software takes then responsibility for some impoitant
fiinctionality, which otherwise would have to be implemented in the application
software. Clearly, application software depends on system software, but these are
dependencies that cannot be really managed by application developers. These are
meta-level technology-managed dependencies.

Ideally, the integration of application and system software should be based on
declarative dependencies documented in various configuration files, preferably XML
files. Configuration files act as agents able to determine actions to be taken (planriers),
selecting between different possible actions (decision makers), managing execution
requests (mediators), etc.

www.manaraa.com

From Hubs Via Holons to an Adaptive Meta-Architecture - the "AD-HOC" Approach 9

Increasingly, XML-style declarative dependencies replace hard-coded
programmatic dependencies not only in integration development (including
integration of application and system software) but also within application
development. As compared with declarative dependencies, programmatic
dependencies introduce tight-coupling between client and supplier objects and are
significantly more difficult to manage. Sometimes, programmatic dependencies are a
sign of weaknesses in the technology applied, but in general they are just a way of
making programming objects to communicate in order to make the application
perform required tasks.

As mentioned, the main purpose of measuring dependencies is to define their
ripple effects so that their impact on system complexity and adaptiveness can be
quantified. However, not all dependencies are equally costly. Some categories of
dependencies are relatively neutral in the calculations aiming at establishing
cumulative dependencies for the system. There is also an important category of
dependencies under the name turning costly into neutral - they can be used as a way
of enforcing the agreed principles of the architecture so that the complexity of the
system can be managed.

The notion of object can refer to a programming element of any granularity (call
(message), signal (event), class, package, component, subsystem, or the entire
system). Accordingly object dependencies can be specified on any of these object
types. Object dependencies of lower granularity need to be then considered when
determining dependencies of higher granularity. Because classes are the main
programming modules in contemporary systems, class dependencies are the focal
point of all modem complexity metrics, such as the CK metrics [2].

5 PCBMER meta-architecture

There is no one unique or best meta-architecture that could provide a framework for
constracting adaptive complex system. Also, depending on the application domain,
the system characteristics and the category of development/integration project,
various variations of a particular meta-architecture can be determined and used. The
pivotal meta-architecture, which we advocate, is called PCBMER. The PCBMER
framework defines six hierarchical layers of software objects - Presentation,
Controller, Bean, Mediator, Entity and Resource.

5.1 PCBMER layers

Fig. 6 illustrates the Core PCBMER architectural fi-amework. The framework borrows
the names of the external tiers (the Client tier and the EIS tier) from the Core J2EE
framework [1], The tiers are represented as UML nodes. The dotted arrowed lines are
dependency relationships. Hence, for example, Presentation depends on Controller
and on Bean, and Controller depends on Bean. Note that the PCBMER hierarchy is
not strictly linear and a higher-layer can have more than one adjacent layer below
(and that adjacent layer may be an intra-leaf, i.e. it may have no layers below it).

www.manaraa.com

10 Leszek A. Maciaszek

Fig. 6 presents two variants of the Core PCBMER framework - one defined on
UML packages and tlie other on UML subsystems. As opposed to the variant with
packages, the services that components/subsystems provide are folly encapsulated and
exposed as a set of ports that define the provided and required interfaces.

Client Tier Client Tier

/ /

PCBMER (defined on packages)

Controller

Mediator

Entity

Resource

/

Layer 1 {root)

Layer2

L^er3
(htra-ieaf)

Layer 4

Layer 5
(tntra-leaf)

Laya-6(1

/

PCBM^ (defined on sub^stems)

«sul3Sistem»g

Preser^tion

Ontal'ace

<<subav4tem>; Sj^tem»g]

Cortrdter

Mntejface

Bnterfapfe

«subS]^ tem>>

IVIediator

«subsoratem>>

&itity

Rnteĵ ac

« s u b s ^ t e m » c

ResojTce

/

Layer 1 (root)

l-a/er2

Layers
(intra-ieaf)

Layer 4

l a /e r5
(inlraleaf)

Layer 6 (I

/

Fig. 6. The Core PCBMER meta-architecture

The emphasis that the notion of component places on encapsulation, ports and
interfaces makes components directly applicable for modeling hub structures.
Therefore, architectural frameworks presented in the context of subsystems may
imply lower cumulative class complexity than those presented with the notion of
package.

The Bean subsystem represents the data classes and value objects that are destined
for rendering on user interface. Unless entered by the user, the bean data is built up
from the entity objects (the Entity subsystem). The Core PCBMER framework does
not specify or endorse if access to Bean objects is via message passing or Svent
processing as long as the Bean subsystem does not depend on other subsystems.

www.manaraa.com

From Hubs Via Holons to an Adaptive Meta-Architecture - the "AD-HOC" Approach 11

The Presentation subsystem represents the screen and UI objects on which the
beans can be rendered. It is responsible for maintaining consistency in its presentation
when the beans change. So, it depends on the Bean subsystem. This dependency can
be realized in one of two ways - by direct calls to methods (message passing) using
the pull model or by event processing followed by message passing using the push
model (or rather push-and-pull model)

The Controller subsystem represents the apphcation logic. Controller objects
respond to the UI requests that originate from Presentation and that are results of user
interactions with the system. In a programmable GUI client, UI requests may be menu
or button selections. In a web browser client, UI requests appear as HTTP Get or Post
requests.

The Entity subsystem responds to Controller and Mediator. It contains classes
representing "business objects". They store (in the program's memory) objects
retrieved from the database or created in order to be stored in the database. Many
entity classes are container classes.

The Mediator subsystem establishes a channel of communication that mediates
between Entity and Resource classes. This layer manages business transactions,
enforces business rules, instantiates business objects in the Entity subsystem, and in
general manages the memory cache of the application. Architecturally, Mediator
serves two main purposes. Firstly, to isolate the Entity and Resource subsystems so
that changes in any one of them can be introduced independently. Secondly, to
mediate between the Controller and Entity/Resource subsystems when Controller
requests data but it does not know if the data has been loaded to memory or it is only
available in the database.

The Resource subsystem is responsible for all communications with external
persistent data sources (databases, web services, etc.). This is where the connections
to the database and SOA servers are established, queries to persistent data are
constructed, and the database transactions are instigated.

The Core PCBMER framework has a number of immediately visible advantages
resulting in minimization of dependencies. One noticeable advantage is the
separation of concerns between subsystems allowing modifications within one
subsystem without affecting the other (independent) subsystems or with a predictable
and manageable effect on the other (dependable) subsystems. For example, the
Presentation subsystem that provides a Java application UI could be switched to a
mobile phone interface and still use the existing implementation of Controller and
Bean subsystems. That is, the same pair of Controller and Bean subsystems can
support more than one Presentation UI at the same time.

The second important advantage is the elimination of cycles between dependency
relationships and the resultant six-layer hierarchy with downward only dependencies.
Cycles would degenerate a hierarchy into a network structure. Cycles are disallowed
both between PCBMER layers and within each PCBMER layer.

The third advantage is that the framework ensures a significant degree of stability.
Higher layers depend on lower layers. Therefore, as long as the lower layers are stable
(i.e. do not change significantly, in particular in interfaces), the changes to the higher
layers are relatively painless. Recall also that lower layers can be extended with.'new
functionality (as opposed to changes to existing functionality), and such extensions
should not impact on the existing fimctionality of the higher layers.

www.manaraa.com

12 Leszek A. Maciaszek

5.2 PCBMER structural complexity

To compute cumulative dependencies between program's objects we use structural
complexity metrics and apply them to a particular design and to a resulting
implementation. The metrics can apply to objects of various granularities, from
methods in classes to subsystems and systems. However, in the structural complexity
argument, the most indicative is a cumulative dependency computed on classes.

In traditional software engineering sense, structural complexity metrics reveal the
classic tension between cohesion and coupling of objects (e.g. [15]). Coupling is
really another name for dependency between objects. Two objects are coupled if they
collaborate with one another. In good designs, coupUng is minimized so that
collaboration is just enough to perform required tasks. As opposed to our stance on
dependencies, coupling allows both-ways collaboration, i.e. cycles are permitted.

If coupling is a relationship between objects, cohesion defines the internal
responsibilities of each object. "A class with low (bad) cohesion has a set of features
that don't belong together. A class with high (good) cohesion has a set of features that
all contribute to the type abstraction implemented by the class." [14, p.246].

The objective is to have low coupling and high cohesion, but unfoitunately these
two concepts contradict each other. For any system, the challenge is to define a right
balance between coupling and cohesion. The best known strategy to balance coupling
and cohesion in object-oriented designs is known as the Law of Demeter (LoD)
(Lieberherr and Holland, 1989). The LoD is known in the popular formulation as
"talk only to your friends" principle. It aims at minimizing coupling by prescribing
what targets are allowed for messages within class methods. Note that the LoD has a
direct counterpart in the PCBMER's NCP principle.

We believe that a starting point to achieve proper balance between the system-
wide cohesion and coupling is to ensure that the initial definition of each class is
determined alone on the basis of its cohesiveness. We, therefore, assume that - for
comparisons of structural complexities in various designs for the same system - the
cohesion of classes is constant (with reason, of course; i.e. classes cannot be grouped
together to achieve lower coupling, but extra classes may be created to ensure
architectural conformance or to take advantage of a particular technology).

With the above in mind, the generic cumulative class dependency formula for the
Core PCBMER defined on subsystems is the same as Formula 3 for hierarchies with
hubs (this is a generic formula and other formulas may apply to specific PCBMER
architectures derived from the Core firamework). Strictly speaking, there is a
difference in the way the formula is applied because the PCBMER framework permits
a lower-layer subsystem to be communicated from more than one higher-layer
subsystem. However, these higher-layer subsystems are considered to be "directly
adjacent", thus the formula applies as stands. Note that because only downward
dependencies are allowed, the communication from higher-layer subsystems retains
the hierarchical properties of the PCBMER framework.

Formula 3 ensures polynomial growth of dependencies between architectural layers
represented as subsystems, while allowing exponential growth of class dependencies
within layers. However, the exponential growth can be controlled by grouping classes
within a layer into nested subsystems (as subsystems can contain other subsystems).
The communication between nested subsystems can then be performed using hubs.

www.manaraa.com

From Hubs Via Holons to an Adaptive Meta-Architecture - the "AD-HOC" Approach 13

6 Summary

In this paper we: (1) explained the interplay between software complexity and
adaptiveness, (2) showed that hierarchical structures with hubs minimize complexity
in the wires (and mentioned, but not elaborated, that hub-spoke structures can provide
further minimization), (3) talked about the structure and behaviour of living systems
in terms of holons and holarchies and linked these concepts to software systems, (4)
provided an elaborated classification of object dependencies, (5) introduced the
PCBMER meta-architecture and defined its layering structure, architectural principles,
and structural complexity.

The lack of space did not permit to address software engineering practices and
technologies that could guarantee the compliance of an implemented software system
with the PCBMER meta-architecture and its principles. Similarly, no reverse-
engineering verification procedures were defined to substantiate in metrics the level
of compliance in the implemented system. Many of these issues have been addressed
in other "AD-HOC" papers and are being compiled into a book [9].

References

1. Alur, D. Crupi, J. and Malks, D.: Core J2EE Pattems: Best Practices and Design Strategics.
2"'' edn. Prentice Hall (2003)

2. Chidamber, S.R. and Kemerer, C.F. A Metrics Suite for Object Oriented Design. IEEE Tran.
od Soft. Eng. 6 (1994) 476-493

3. Daskin, M.S.: Network and Discrete Location. Models, Algorithms and Applications John
Wiley & Sons (1995)

4. Fenton, N.E. and Pfleeger, S.L.: Software Metrics. A Rigorous and Practical Approach.
PWS Publ. Comp. (1997)

5. Koesder, A.: The Ghost in the Machine. Hutchinson (1967)
6. Koesder, A.: Janus. A Summing Up. Hutchinson (1978)
7. Koestler, A.: Bricks to Babel. Random House (1980)
8. Lieberherr, K.J. and Holland, t.M.: Assuring Good Style for Object-Oriented Programs.

IEEE Soft. 9 (1989) 38-48
9. Maciaszek, L.A.: Development and Integration of Adaptive Complex Enterprise and E-

business Systems. Pearson Education (2007) (in preparation)
lO.Maciaszek, L.A.: Requirements Analysis and System Design. 2"'^ edn. Addison-Wesley,

Harlow England (2005)
11.Maciaszek, L.A. and Liong, B.L.: Practical Software Engineering. A Case-Study Approach.

Addison-Wesley, Harlow England (2005)
12.Maciaszek, L.A. De Troyer, O.M.F Getta J.R. and Bosdriesz, J: Generalization versus

Aggregation in Object AppUcation Development - the "AD-HOC" Approach. Proc. 7*
Australasian Conf. on Inf. Syst. ACIS'96., Hobart, Tasmania, Australia (1996) 431-442

13.Maciaszek, L.A. Getta, J.R. and Bosdriesz, J.: Restraining Complexity in Object System
Development - the "AD-HOC" Approach. Proc. 5th Int. Conf on Inf Syst. Development
ISD'96, Gdansk, Poland (1996) 425-435

14.Page-Jones, M.: Fundamentals of Object-Oriented Design in UML. Addison-Wesley (2000)
15.Pressman, R.S.: Software Engineering. A Practitioner's Approach, 6* edn. McGraw-Hill

(2005) ' •'
16.Tharumarajah, A. Wells, A.J. and Nemes, L.: Comparison of the Bionic, Fractal and

Holonic Manufacturing System Concepts. Int. J. Comp. Integr. Manufact. 3 (1996) 217-226

www.manaraa.com

A C++ Workbench with Accurate Non-Blocking Garbage
Collector for Server Side Internet Applications

Piotr Kolaczkowski and Ilona Bluemke
{P.Kolaczkowski, LBluemke}@ii.pw.edu.pl

Institute of Computer Science, Warsaw University of Technology,
Nowowiejska 15/19, 00-665 Warsaw, Poland

Abstract. At the Institute of Computer Science Wai'saw University of Technology
a workbench for building server-side, dependable, Internet applications was
designed and implemented. This workbench is a collection of C+-t- classes. The
design and implementation of these classes are briefly described. The most
important part of the workbench is the web server, implemented as a C-n- class
that can be used in a standalone application. To implement the web server a
precise, concurrent garbage collector was designed. Our garbage collector is
based on the concurrent mark-and-sweep algorithm and smart pointer pattern. It
makes the risk of memory access faults or memory leaks much lower than in
standard C/C+-f applications. The advantages of our workbench are shown in
some experiments. We have measured the overhead of our garbage collector and
the performance of the workbench. A comparison with other systems is also given.

1 Introduction

Automatic memory management techniques have been successfully employed for years.
Existence of a garbage collector increases the dependability of applications and makes
programming easier. A garbage collector is a core component of many programming
enviroimaents e.g. for languages like Java or C#. On the contrary, originally designed
without automatic memory management, uncooperative environments are still used. The
C+-I- language belongs to such environments. Although conservative garbage collection
techniques are quite popular [1], the design of an accurate, non-blocking garbage
collectors is a very complex task and those collectors are rather uncommon. In the paper
we show, how the accurate, non-blocking garbage collector designed and implemented at
the Institute of Computer Science Warsaw University of Technology [2,3] was employed
in a C++ workbench for dependable server side Internet apphcations. A very important
issue is to provide the high quality and the dependability of such applications. Although
there are many techniques for building an Internet application [4], it is not easy to
develop it in widely used C++ programming language. A C++ programmer can use
only few techniques: CGI [5], FastCGI [6] or .NET environment. One of the problems
that has to be solved by the programmer in C++ programs is the memory management.
Errors in the memory management are often the source of defects and security.holes.

The paper is organized as follows. In the next section some general memory
management approaches in C++ applications are briefly described and their usabihty for
building Internet applications is discussed. In Section 3 the implemented workbench is

Please use the foUowing format when citing this chapter:

Koiaczkowski, P., Bluemke, I., 2006, in IFIP International Federation for Infomiation Processing, Volrnne 227, Software
Engineering Techniques; Design for Quality, ed K. Sacha, (Boston; Springer), pp. 15-24.

www.manaraa.com

16 Piotr Kolaczkowski, Ilona Bluemke

presented. The following aspects of the web server are mentioned: memory management,
application interface, concurrency support, session handling. In Section 4 some
experiments are described. The throughput and the response time of sample C++
applications, prepared with the workbench, were measured. The overheads of the
garbage collector are examined. The final section contains conclusions.

2 Related work

Boehm and Weiser have developed a good and widely used conservative garbage
collector for C and C++ languages [1,7]. This garbage collector can work in one of the
two modes: blocking or incremental. The blocking mode uses the mark-and-sweep
algorithm. The incremental mode uses the train algorithm [8], which is much slower,
but reduces the execution delays. In both modes the collector does not guarantee that
all dead (inaccessible) data are removed, so some small memory leaks are possible. The
probability of such leaks is higher for applications with larger heaps e.g. extensively
caching webservers. Memory leaks can be disastrous in long-running applications.

Barlett proposed a generational, mostly-copying, conservative garbage collector for
C++ [9], which according to the benchmarks presented in [10] performs better than the
Boehm-Weiser's collector. It is also more accurate, because the programmer provides
special procedures enabling the garbage collector to find pointers in objects. On the
other hand, some parts of memory are still treated conservatively, so the problem of
possible memory leaks remains. Additionally, the programmer can give erroneous
relative pointer locations and mislead the garbage collector. This can be a cause of
severe memory management failures.

Detlefs studied the possibility of using the C++ template metaprogramming
techniques to achieve the garbage collector's accuracy [11]. Smart pointers can be used
to track references between objects. This allows for the accurate garbage collection
without the need to manually specify the relative pointer locations. Detlefs used this
technique in a reference counting collector. His measurements show that reference
counting can impose a time overhead of over 50% which is probably too high for being
successfully used in a high performance web application.

In spite of some small programming inconveniences introduced by smart pointers
(their usage differs a little from the C++ built-in pointers) [12], we proposed how to
use them with a concurrent mark-and-sweep algorithm to get an accurate, non-blocking
garbage collector [3]. Our research did not show how the garbage collector performs
in a real-world application. Only benchmarks for single memory operations were
done. Some interesting recent benchmai-ks can be found in [13], but these don't cover
real-world server side applications, too.

Henderson designed a different technique for building an accurate garbage collector
based on the code preprocessing approach [14]. The preprocessor inserts additional
instructions into the original C code. These instructions enable the garbage collector to
find exact pointer locations. Although Henderson didn't implement a multithreaded
garbage collector, he proposed how to do it using his approach. He also performed
some simple benchmarks and obtained promising results.

www.manaraa.com

A C+ + Workbench with Accurate Non-BIockmg Garbage Collector for Server Side Internet Applications 17

While garbage collection techniques were being improved, engineers and researchers
were independently creating new ways of building internet server side applications. The
latters can be divided into two main categories: scripts and applications servers. Scripts
may be used for small applications. Severs are dedicated for more complex ones, even
distributed. An overview of techniques for Internet applications can be found in [4].

The script is a file containing some instructions. By processing these instructions a
WWW server is able to generate the Internet page. There are many kinds of scripts e.g.:
CGI [5,6], PHP [15], Cold Fusion [16], iHTML [17], ASP [18]. The script is invoked
for each request by the WWW server. The script technique is simple but it can be used
to build applications like portals or Internet shops. Some script languages e.g. PHP
contain special constructs useful in such applications like: data exchange, access to data
bases, interfaces based on MVC (Model View Controller) patterns. Due to the short time
of hving of the script process, scripts don't take much advantage of garbage collectors.

Application servers can be used for building complex, multilayered, distributed
apphcations. Such apphcations may communicate with users by Internet browsers. The
application is active all the time and receives HTTP requests from the browser, Java
servlets and JSP [19,20] operate this way. In application servers some optimization
techniques can be included e.g. caching data or keeping a pool of open database
connections. Servers often provide advanced services e.g. load balancing, distributed
transactions, message queuing. Components for MVC model are also available.
Application servers usually run on virtual machines. These environments need a lot of
memory but the execution of the application is more efficient than in script interpreters.
Due to longer run times, this approach usually requires employing a good garbage
collector. Virtual machines like JVM or CLR often contain more than one built-in
garbage collector implementation.

3 The C++ workbench

The C++ workbench designed and implemented at the Institute of Computer Science is
dedicated to small and medium size Internet applications. A very important issue is
to provide the dependability and the high quality of applications prepared with this
workbench. Efficiency and good memory management had also high priorities in the
design process.

Main functions required were sending/receiving text and binary data to/from Internet
browsers, sending and receiving HTTP cookies, session handling. A set of C++ classes
was implemented. These classes constitute two components: the WWW server and the
garbage collector. The garbage collector enables the programmer to create software of
higher quality than using standard, manual memory management schemes. Automatic
memory manager would never deallocate the same memory region twice or deallocate
memory being used, causing a memory access error or a potential leak. Although it is
possible to avoid these errors without a garbage collector, using it can significantly reduce
the total software production time. The garbage collector finds inaccessible objects by
analysing references among objects. This collector is accurate and is able to find all
inaccessible objects. Objects created with the functions provided by our collector are
destroyed automatically. Our collector does not influence any code that manages memory

www.manaraa.com

18 Piotr Kotaczkowski, Ilona Bhtemke

THttpSesslanBroker
tpasses requests to

1

THttpServar
4-passes requests to

THttpResponse

SL i
+reglsters in

+fills In

JHttpServ/et

^
'+stores

+reads

THttpCookle

0.,n 4reg(sters in

IHttpSESslonServlet

+ereates

Fig. 1. Class diagram of the WWW server

manually. Objects created by built-in new operator should be destroyed manually.
Automatic garbage collection introduces some overhead compared to manual memory
management. Our garbage collector works concurrently with the application. Execution
of application's threads is interrupted for a predictable, limited amount of time. This
time does not depend on the number of objects and is so short, that will not be noticed
by a user waiting for an Internet page. The implementation details of this garbage
collector are given in [2]. Automatic memory management by this collector was used in
other components of the C++ workbench i.e. the WWW server. The WWW server is a
very important part of the C++ workbench. It is implemented by the class THttpServer
presented in Fig. 1. This class interacts with the browser by the HTTP protocol. A
progranmner has to create an object of this class, set some attributes and call the Run
method. As the server is one class only, several servers listening on different ports can be
created. In Fig. 1 some other classes are also shown. These classes are used to improve
functionality of the embedded WWW server and are described in sections 3.1-3.4.

3.1 Servlets

Servlets are objects registered in the server handling HTTP requests. Servlets are created
by the programmer. Each servlet implements the IHttpServlet interface. The appUcation
programming interface of the workbench never uses raw C++ pointers to pass data to or
from the class methods, instead it uses smart pointers provided by the garbage collector
component. Hence, to register the servlet, a smart pointer to it must be passed to the
server. The server with registered servlets, handles a request in the following manner:

1. The WWW server receives a request and checks its correctness. If it is incorrect,
an appropriate error message is returned to the browser.

2. During the registration process the servlet receives an identifier. Basing on the ,URI
identifier included in the request, the server identifies the servlet responsible for
handling it. If the servlet can not be found, an error message with a HTTP 404
code is sent to the browser.

www.manaraa.com

A C+ + Workbench with Accurate Non-Blocking Garbage Collector for Server Side Internet Applications \ 9

3. The server creates an object of the THttpRequest class and fills it with the data
send by the browser. The object contains identifier of a resource requested by the
client, HTTP headers and a pointer to the opened input stream.

4. The server creates an object of THttpResponse class.
5. The objects created in steps 3. and 4. are given to the servlet. The server waits for

the next request.
6. The servlet reads data from the THttpRequest object and generates a response by

writing appropriate data into the THttpResponse object.
7. The server closes the connection.

3.2 Receiving and sending data

When a HTTP request comes, the data sent by the Internet browser are written into the
THttpRequest object, which is then passed to the servlet. This object has methods
returning e.g.: the requested HTTP method (GET, POST or others), the identifier of the
requested resource (URI), the HTTP cookies, the text and binary data sent in the 'body'
of the request. The servlet receives also a THttpResponse object. This object is used to
send a response to the web browser The following methods in this object are available:

- setting a status code of the HTTP message,
- setting a header,
- setting, modifying or deleting HTTP cookies,
- setting content-type MIME of the sent document,
- opening a buffered output stream and sending the body of the response.

All arguments are passed either by value, by reference or by smart pointer The raw C++
pointers are not used. This allowed to achieve an easy programming interface. Objects
allocated on the heap inside the methods of the THttpRequest and THttpResponse
classes are always created by the garbage collector.

3.3 Threads

At its start the server initialises a pool of threads. These threads are waiting on a
semaphore for HTTP requests. The main thread listens on a local port (initially 80)
and passes requests to one of the waiting threads. If the pool of waiting threads is
empty, the main thread stops receiving new requests. The user can set the total number
of threads in the pool. Handling concurrent request may cause some problems with
common data accessed or modified by several threads at once. To alleviate this problem
some simple mutex based synchronization is provided by the servlet container There is
no distributed transaction monitor.

3.4 Session

The class THttpSessionBroker is a session manager It is responsible for recognizing
clients, assigning session identifiers and directing requests to an appropriate session
servlet. The session servlet is an object implementing the IHttpSessionServlet interface.

www.manaraa.com

20 Piotr Kolaczkowski, Ilona Bluemke

This interface provides methods for passing information to the session manager about
opening or closing a session. There is a separate session servlet created for each
session. The manager opens a session for each new cHent. The session can also be
opened explicitly by calling an appropriate method from the manager. The session
manager also closes inactive sessions. The session identifier is 128 bits long and is
randomly generated. The association between the session identifier and the servlet is
made in an associative table. The session identifier is stored implicitly in a HTTP
cookie. The session manager is able to find the session identifier as an argument of the
GET request or inside the WWW page.

4 Experiments

Below some experiments with the C++ workbench are presented. The goal of these
experiments was to measure how the garbage collector influences the performance and
response times of the system.

4.1 Performance experiments

In the experiments described below a gratis program httpjoad [21] prepared in ACME
was used. ACME produced also a very powerful Internet server thttpd [22]. In our
experiments two simple applications were used:

application A Displays a page containing simple text of parameterized length.
application B At the start allocates some permanently reachable objects and produces

a constant memory leak per each request.

All the tests were run on a Celeron 2.4 GHz / 256 MB RAM computer. Results of
throughput measurements are shown in Fig. 2.

Each server running application A was sequentially sent 10000 requests by the test
client residing on the same machine. The length of the response was set to 10 bytes, so
that the time of transmitting the data was negligible. The experiment was conducted 10
times. The mean values were calculated and are presented in Fig. 2. Our workbench
performed not worse than well known enterprise-level webservers. Response times were
also typical (Fig. 3). Under heavy load (Fig. 4), when more users tiied to access the
servlet at the same time, the performance dropped shghtly after exceeding 25 concurrent
requests, but was still better than that of Tomcat, running on a JIT enabled Java Virtual
Machine 1.4.2. The experiment described above shows, that the implemented garbage
collector can be effectively used in Internet interactive applications.

4.2 Overhead of the garbage collector

The overhead was measured using the GPROF profiler from the GCC 3.3,4 package and
is presented in Fig. 6. The application B was queried 100,000 times at an average, rate
of 400 requests/second. It allocated 6 MB at the start and produced 2,5 kB memory
leak per request. The measurements show, that it spent most of the time serving
requests or waiting for them to come. The total garbage collector overhead was less

www.manaraa.com

A C++ Workbench with Accurate Non-Blocking Garbage Collector for Server Side Internet Applications 21

thttpd 2.23b, static file

THttpServer, C++ servlet E

Apache 1.3, static fiie C

Tomcat 4.0, Java servlet C

Apaclie 1.3, PHP script C

I ' ' ' I ' ' ' I ' ' ' I ' I ' I ' ' ' I ' ' ' I ' ' ' I ' ' ' I ' ' ' '("' '"' f i - r r y , • • • , • • • • p - , , •)

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

throughput [requests / s)

Fig. 2. Comparison of performance of various WWW servers serving application A

thttpd 2.23b, static file

THttpServer, C++ servlet r ^ '

Apache 1.3, static tile t,,

Tomcat 4.0, Java servlet C

Apache 1,3, PHP script C

0 40 60 80

maximum response time [ms)

100 1 2 0

Fig. 3. Comparison of maximum response times of various WWW servers

100 125

concurrent requests

_ j —

150

— I
200

Fig. 4. Performance of the server under heavy load

www.manaraa.com

22 Piotr Kolaczkowski, I/ona Bliiemke

1500

1400

1300

1200

1100

1000

900

S 800

1 700

600

500

400

300

200

100 ,

0

servlet response time

collection time

; r""'"
. - ¥ . • • . ^ _ _ u . — — —

H

1 1 1 1
1 2 3 4

• •

i> _... ' •

. .•• '¥

^
1 1

• :

\ 1 1
5 6 7 8 9 10

heap size [MB]

Fig. 5. The total servlet response times and garbage collection times.

than 5%. The part of the collector that is responsible for creating and destroying smart
pointers and registering new objects takes much more time than the mark-and-sweep
process, so this part should be optimized in the near future. The result of measurements
of the garbage collection time (given in Fig. 5.) proves that the garbage collector works
concurrently. The requests were handled successfully while the garbage collector was
running. The requests were sent at a rate of 100 per second to the Application B.
Maximum times from 1500 requests are shown.

Pointer creation and tracking (1.6%)
Object creation (1.7%)
Dead memory search and memory reclamation (0.8%)
Waiting (18.2%)
Requests processing (77.8%)

Fig. 6. CPU overhead in the garbage collector

5 Conclusions and future work

In the paper we presented how a non-blocking accurate garbage collector was used as a
component in a real-world application - the workbench for C++ server side Internet
appUcations. The workbench is simple, but provides enough functionality to build small
and middle size Internet applications. The performance of our www server, as shown
in section 4.1 is also pretty good.

www.manaraa.com

A C++ Workbench with Accurate Non-Blocking Garbage Collector for Server Side Internet Applications 23

The smart pointer pattern used in the garbage collector resulted in simplicity of the
interface. The lack of manual memory management routines in the servlet container
and user's servlets enables to achieve high dependability of applications. As was
experimentally proved these features neither severely diminish the system performance,
nor make response times too long to annoy the user. There was also no significant
difference in the performance of the presented system and systems not using the garbage
collector at all, or systems running on virtual machines with advanced, generational,
copying garbage collectors. This shows that usage of a non-conservative, non-blocking
garbage collector in an uncooperative environment like C++ is reasonable and practical.

The garbage collector used in our workbench can be further refined. The object
architecture of it makes such modifications easy. So far our workbench was used in
rather simple applications. A generational version of the garbage collector is possible
and can be a subject of the future research. There is evidence that generational garbage
collectors perform better than the non-generational ones [13].

References

1. Boehm, H.J., Weiser, M.: Garbage collection in an uncooperative environment. Softw. Pract.
Exper. 18(9) (1988) 807-820

2. Kolaczkowski, P., Bluemke, I.: A soft real time precise tracing garbage collector for C++.
Pro Dialog (20) (2005) 1-11

3. Kotaczkowski, P., Bluemke, I.: A soft-real time precise garbage collector for multimedia
applications. In: V International Conference Multimedia in Business and Education,
Multimedia w Biznesie i Edukacji. Volume 2., Cz^stochowa, Poland, Fundacja Wspolczesne
Zarztidzanie Bialystok (2005) 172-178

4. Kolaczkowski, P.: Techniques for building server side internet applications. Pro Dialog (18)
(2005) 31-59

5. Colbum, R.: Teach Yourself CGI Programming in a Week. Sams Publishing, Indianapolis,
Indiana, USA (1998)

6. Open Market, Inc.: FastCGI homepage (2006) http://www.fastcgi,com/.
7. Boehm, H.I.: Space efficient conservative garbage collection. In: PLDI '93: Proceedings of

the ACM SIGPLAN 1993 conference on Programming language design and implementation.
New York, NY, USA, ACM Press (1993) 197-206

8. Seligmann, J., Grarup, S.: Incremental mature garbage collection using the train algorithm. In:
ECOOP '95: Proceedings of the 9th European Conference on Object-Oriented Programming,
London, UK, Springer-Verlag (1995) 235-252

9. Barflett, J.F.: Mostly copying garbage coUection picks up generations and C++. Technical
Report TN-12, Digital Equipment Corporation Western Research Laboratory (1989)

10. Smith, P., Morrisett, G.: Comparing mostly-copying and mark-sweep conservative collection.
In: ISMM '98: Proceedings of the 1st international symposium on Memory management.
New York, NY, USA, ACM Press (1998) 68-78

11. Detlefs, D.; Garbage collection and run-time typing as a C++ library. In: C++ Conference.
(1992) 37-56

12. Edelson, D.R.: Smart pointers: They're smart, but they're not pointers. Technical report.
University of California at Santa Cruz, Santa Cruz, CA, USA (1992)

13. Blackburn, S.M., Cheng, P., McKinley, K.S.: Myths and realities: the performance impact of
garbage collection. SIGMETRICS Perform. Eval. Rev. 32(1) (2004) 25-36

www.manaraa.com

24 Piotr Kolaczkowski, Ilona Bhtemke

14. Henderson, E: Accurate garbage collection in an uncooperative environment. In: ISMM '02:
Proceedings of the 3rd international symposium on Memory management. New York, NY,
USA, ACM Press (2002) 150-156

15. Tlie PHP Group: PHP documentation (2006) http://www.php.net/docs.php.
16. Adobe Systems, Inc.: ColdFusion documentation (2006) http://www.macromedia.com/

support/documentation/en/coldfusion/.
17. Inline Internet Systems, Inc.: User's guide to iHTML extensions version 2.20 (2001)
18. Mitchell, S.: Teach Yourself Active Server Pages 3.0 in 21 Days. Helion, Gliwice, Poland

(2003)
19. Goodwill, J.: Pure JSP: Java Server Pages. Helion, Warszawa, Poland (2001)
20. Damon Houghland, A.T.: Essential JSP for Web Professionals. RM, Warszawa, Poland (2002)
21. ACME Labs: Multiprocessing HTTP test cUent (2005) http://www.acme.com/software/http'

load/.
22. ACME Labs: Tiny/turbo/throttling HTTP server (2005) http://www.acme.com/software/

thttpd/.

www.manaraa.com

Scenario-based Component Behavior Filtration^

Yan Zhang, Xiaofeng Yu, Tian Zhang, Xuandong Li, and Guoliang Zheng

State Key Laboratory of Novel Software Technology
Department of Computer Science and Technology
Nanjing University, Nanjing, P. R. China 210093

zhangyan@seg.nju.edu.cn, lxd@nju.edu.cn

Abstract. Components with undesired behavior could not be used properly
by users. Therefore, the scenario-based behavior filtration of components is
a significant problem to be solved, where the scenarios specify what behav
ior is undesired and what is desired. We propose an approach for filtering out
the undesired behavior specified by a scenario specification from components.
The mam idea of our approach is that by constructing a special environment,
i.e., conditional exclusive environment, for a component, all undesired behav
ior specified by one scenario specification can be filtered out and all desired
behavior specified by another scenario specification can be preserved when the
component works in the environment. We use interface automata to model the
behavior of components and a set of action sequences to absti-act the scenario
specification in message sequence charts. The composition of components is
modelled by the product of interface automata. We give the relevant algorithm
in our approach and illustrate it by an example.

1 Introduction

Component-based software development (CBSD) is a good approach to attain reli
able, flexible, extensible and evolvable systems. By the reuse of existing software
components and the plug-and-play mechanisms, complex systems can be developed
more rapidly and economically. In CBSD, users retrieve desired components from
repositories and composite them to build a new system.

When an existing component could not meet the requirement of users exactly,
we can compose several available components to perform the given task [1,2]. Al
though components composition can repair inadequate behavior of sole component, it
is insufficient to tackle the undesired behavior in available components. The behavior
of a component that could obstruct the use of the component in some scenario may
be undesired for specific users. Retrieved components with undesired behavior are
frequently encountered by users, because users' requirements are various and it is
difficult to find an exact match in repositories.

Usually, users give their requirements by a description of scenarios, which is
called the scenario specification. The scenario specification can describe either the

This paper is supported by the National Grand Fundamental Research 973 Program of China
(No. 2002CB312001), the National Natural Science Foundation of China (No. 60425204,
No. 60233020), and by Jiangsu Province Research Foundation (No. BK2004080).

Please use the foil owing format when citing this chapter:

Zhang, Y, Yu, X., Zhang, T., Li, X., Zheng, G., 2006, in IFIP International Federation for Information Processing, Volume
227, Software Engineering Techniques: Design for Quality, ed. K. Sacha, (Boston: Springer), pp. 25-36.

www.manaraa.com

26 Yan Zhang, Xiaofeng Yu, Tian Zhang, Xuandong Li, Giioliang Zheng

user's desired or undesired behavior of a component when it interacts with other. The
scenario-based behavior filtration of a component is to discard the undesired behavior
and preserve desired behavior of the component in terms of the scenario specifications
given by a user.

In this paper, we propose an approach to filtering the behavior for a component
based on scenarios. By constructing an environment (i.e., another component) for
a component, filter out all undesired behavior and preserve all desired behavior of
the component when the component works in the envuronment. The undesired and
desired behavior of the component are specified by scenario specifications. Interface
automata [3] are used to model the behavior of components. Scenarios are specified
by message sequence charts (MSCs) [4] and a MSC is abstracted as a set of action
sequences further. The composition of components is modelled by the product of
interface automata. We extend the concept of environment in the interface automata
theory and introduce conditional exclusive environment (CXE). By constructing a
CXE E for a given interface automaton R under two known sets C'^,C~ of action
sequences, make all behavior represented by some element in C~ to be discarded in
i? ® i?. At the same time, all behavior represented by any element in £+ , if it is also
the behavior of i?, is preserved in R® E.

The remainder of this paper is organized as follows. Section 2 gives a brief intro
duction on interface automata and message sequence charts. Section 3 introduces some
relevant concepts about our proposal. Section 4 describes the approach to scenario-
based behavior filtration of components in detail and shows the constructive algo
rithm of CXE. Finally, in section 5 we discuss the related works and conclude this
paper. Additionally, an example is used to illustrate our approach throughout the
paper.

2 Background

In the section, interface automata and MSCs are introduced briefly. The most of
concepts about interface automata and MSCs refer to [3] and [4] respectively.

2.1 Interface Automata

Definition 1 (interface automaton, lA). An interface automaton P =
(Vp, V̂ ™*, A^p,A%,A^,Tp) is a 6-tuple, where

- Vp is a finite set of states.
- Vp™* C Vp is a set of initial states. If Vp"'* = 0 then P is called empty.
- ^ p , A'p and Ap are mutually disjoint sets of input, output and internal actions.

Ap denotes the set of all actions, i.e., Ap = Ap U A$ U Ap .
- '^p Q Vp X Ap X Vp is a set of steps. If T = {v, a, u) G Tp, then write

lahel{T) = a, head{T) = v, tail{T) — u.

If a e A^p (resp. a e A$, a € A"), then {v, a, v') is called an input (resp. output,
internal) step. If there is a step (u, a, v') e Tp for some v, v' G Vp, a e Ap, then we
say that action a is enabled at state v. For v G Vp, let A^p{v) = {a & A^p \3v' &

www.manaraa.com

Scenario-based Component Behavior Filtration 27

Vp . {v,a,v') e Tp}, A${v) = {aeA'^ \3v' € Vp. {v,a,v') G Tp} and A§{v) =
{a e Ap \3v' eVp . (v, a, v') e Tp} be respectively the subset of input, output and
internal actions that are enabled at the state v. Let Ap{v)

If lA P satisfies \Vf^^\ = 1 and V(u,a,u) [v.a.u

A^p{v)\jA'^{v)uAf{v).

£ Tp .u = u', then P is
deterministic, otherwise P is non-deterministic. For simplicity, we make a convention
that all interface automata referred in this paper are deterministic.

\ % h h I I I % % 4-

^

fail!

or(Lrec?^^ data^hdl\^ inv-chk!.

data^err!

Qp, ship-ok?^^ billinf]! ^^

rejection!

cred^oJc? ,

arcfiiving;

1̂ It il |T il il i l!
I J 1 I 3 I I

Fig. 1. Interface automaton Seller. The symbol " ? " (resp. " ! ", " ;") appended to the name
of actions denotes that the action is an input (resp. output, internal) action. An arrow without
source denotes the initial state of the interface automaton

Example 1. The lA Seller (see Fig. 1) specifies the behavior of a component when
it interacts with other. The component stands for a seller in a business to business
system. The seller receives an order {ord_rec) from a customer and handles data in
the order {data_hdl), e.g., transform of data format. If there is some error in the order,
it will report the error (data_err) to the customer, otherwise it continues to check
the inventory {inv_chk) from the supplier and the customer credit {cred_chk) from
the bank. Contingent on availability of inventory (inv_ok) and valid credit (cred_ok),
the seller will inform the shipper to ship product (shipping) and the bank to bill
the customer for the order (billing). Either unavailability of inventory (inv_Jail) or
invalid credit (cred_fail) will lead to reject the order (rejection). The seller can
receive some information (cancel) from the customer to terminate (exit) the order. If
shipping and bilhng finish successfully (ship_ok and hill_ok), the seller will make
archive (archiving) and give the notification (success) to the customer. Otherwise the
negative notification (fail) will be given after processing the exception (errjidl).

An execution fragment of lA P is a finite alternating sequence of states and actions
voaQViai • • • ttn-iVn , where (vj, Oj, Wi+i) G Tp , for all 0 < i < n. Given two states
i), u G Vp, we say that u is reachable from v if there is an execution fragment with
V as the first state and u as the last state. The state u is reachable in P if there is an

www.manaraa.com

28 Yan Zhang, Xiaofeng Yu, Tian Zhang, Xuandong Li, Giioliang Zheng

Let Fp denote the set of all execution fragments in lA P. For every r] e Fp, write
the first state of r] as first{ri), the last state of rj as last{ri) and the set of all states of
rj as V{rj).

Definition 2 (interface automata product). Two lAs P and Q are composable if
Aff^AQ = 0, A^nAp = 0, A^pnA'q = $ and A$nA'^ = 0. Let shared(P,Q) =
APDAQ^ {ApDAq) U (APDAQ) be the set of shared actions of P andQ. The
product of P and Q, denoted by P®Q, is the lA defined by

Vp^Q = VPXVQ

V 'init rrinit . , •t/init

P®Q - Vp X VQ

Ap^Q = {Ap U AQ) \ shared{P, Q)

A%Q = {A$ U A^) \ shared{P, Q)

Ap^Q = ApUAgU shared{P, Q)

'Fp(SQ = {{{v,u),a,{v',u))\{v,a,v) eTp Aa ^ shared{P,Q) AU€VQ}

U {{{v, u), a, {v, u')) I [u, a, u) e TQ A a ^ shared{P, Q) Av E Vp}
U {{{v,u),a,{v',u)) \{v,a,v')eTp A {u,a,u')eTQ Aaeshared{P,Q)} .

At some state of P ® Q, one lA, say P (or Q), may produces an output action
that is an input action of Q (or P), but isn't enabled at the current state in Q (or P).
Such state is an illegal states oi P ® Q. For two composable lAs P and Q, the set
of illegal states of P ®Q is denoted by Illegal (P, Q) CVp XVQ ,

Illegal{P, Q) = {{v, w) G Vp x VQ | 3 a € shared{P, Q).

((a e Ap{v) A a ^ ^ Q (W)) V (a G AQ{U) A a ^ Ap{v))} .

Definition 3 (environment). An lA E is an environment/or an lA R if: (1) E and R
are composable, (2) E is not empty, (3) A^^ = A'p, and (4) if
Illegal{R, E) ^%, then no state in IUegal{R, E) is reachable in R0 E.

2.2 Message Sequence Charts

MSC [4] is a trace description language for visualization of selected system runs.
It concentrates on message interchange by communicating entities and their environ
ment. Every MSC specification has an equivalent graphical and textual representation.
Especially the graphical representation of MSCs gives an intuitive understanding of
the described system behavior. Therefore, MSC is a widely used language for scenario
specifications.

The fundamental language constructs of MSCs are component and message flow.
Vertical time lines with a named heading represent components. Along these time
lines, MSC events (i.e., message send or receive events) are arranged that gives an
order to the events connected to this component. A message is depicted by an arrow
from the send to the receive event. The fact that a message must be sent before it can
be received imposes a total order on the send and receive event of a message and,

www.manaraa.com

Scenario-based Component Behavior Filtration 29

furthermore, a partial order on all events in a MSC. An example of MSCs is shown
in Fig. 2 .

Definition 4 (message sequence chart, MSC). A message sequence chart Ch =
{C, £, M, T, O) is a 5-tuple, where

- C is a finite set of components.
- £ is a finite set of events corresponding to sending or receiving a message.
- M is a finite set o/messages. For any m £ M, let s{m) and r{m) to denote the

events that correspond to sending and receiving message m respectively.
- T : £ —^ C is a labelling function which maps each event to a component.

- O C £ x£ is a partial order relation over the set of events. For every (e, e') G O ,
there is e ^ e'. (e, e') represents a visual order displayed in Ch.

Each MSC describes a set of message sequences. A message sequence of one
MSC must be composed of all messages of the MSC and any message occurs only
once in the sequence. For any two messages in the sequence, if one precedes the other
then their send events and receive events should not violate the partial order relation
over the set of events. Observe that messages in MSCs correspond to actions in lA.
Hence, we call a message sequence of MSC as an action sequence derived from the
MSC and write it as £> = Q{Q)Q{1) • • • g{n), where g(i) is a message in the message
sequence for all 0 < i < n .

m s c EXIT

seller

ord-rec

ei
£2

eo

1 exit

msc SALE
shipper

64,

I I I I I I I I

63

inv_ok

cred-ok

\

eo

billing

62
shipping

67

66

(a) MSC 'EXIT' (b) MSC 'SALE'

Fig. 2. MSCs specifying scenarios about the interaction among the seller component, consumers
and other components

Example 2. The MSCs 'EXIT' and 'SALE' (see Fig. 2(a) and 2(b) respectively)
show two scenario specifications about tlie seller component (in Example 1) inter
acting with consumers and other components. The MSC 'EXIT' describes a sce
nario: the seller interrupts the process of ordering and exits after it receives an
order from a customer. From the MSC 'EXIT' we can derive a set of action se
quences, £ E = {ord_rec"exit}. For legibility, we use the symbol " " " to separate
two adjacent actions in an action sequence. The MSC 'SALE' describes a scenario:
if the seller receives inv_ok and cred_ok it should produce shipping to the ship
per and hilling to the bank. From the MSC 'SALE' we can derive a set of ac
tion sequences, £3 = {inv_ok"cred_ok'"shipping"billing, cred_ok''inv_ok''shipping"
hilling, inv__ok"cred_ok''hilling"shipping, cred_ok"inv_ok"billing"shipping} .

www.manaraa.com

30 Yan Zhang, Xiaofeng Yit, Tian Zhang, Xitandong Li, Guoliang Zheng

3 Conditional Exclusive Environment

For any execution fragment rj = viaiViJ^iaiJ^i • • -aj-^iVj {i < j) of lA P, where
Vi e Vp™*, if Vi = Vj or Ap{vj) = 0, then r/ is called a run in P. Let Sp denote the
set of ail runs in lA P . For any execution fragment 77 = ViUiVi+iai+i • • • aj-iVj e Fp
(i < j), we say that execution fragment 77' = VgasVs-i^ias+i • • • at-iVt (i < s <t < j)
is in 7], denoted hy rj' C 77, Specifically, if rj' = Vga^Vg+i {i < s < j), then we
say that the step r = (v^, a^, Vs+i) e Tp is in the execution fragment rj, denoted by
T C 77.

The trace of an execution fragment 77 = voaoviai • • • a„_iv„ is a subsequence of
77, which consists of all actions in 77. We write trace{r]) = aooi • • • a„_ i . Given an
execution fragment 77 G rp0Q and trace{rj) = aoai • • • a „_ i , the projection of 77 on
lA P, denoted by 7rp(trace(77)), is a subsequence of trace{rj), which is obtained by
deleting all actions â e AQ \ shared{P, Q),0<i<n — 1 from trace{r]).

Given two composable lAs P and Q, there are 77 = voaoviai • • • a„_it;„ 6 Fp
and a € Spi^Q • If there exists an execution fragment (C a satisfying 7Tp(trace(C)) =
trace{r}) and for any VittiViJ^i C 77 there is {vi,Ui)ai{vi-i.i,Ui^i) C (,, where
Ui, Wi+i € VQ and Q <i <n, then we say that 77 is covered by a . At the same time,
{ui,ai,Ui^i) is called the corresponding step of {vi,ai,Vi^i) if ai € shared{P,Q),
and Mj,t4j+i is called the corresponding state of Vi,Vi+i respectively. If an execution
fragment of lA P can be covered by a run of lA P ® Q, then it means tliat the
behavior represented by the execution fragment of P can be preserved in P ® Q.

Given a run a of lA P and an action sequence Q, if ^ is a subsequence of
trace{a), then we say action sequence g occurs in run a, denoted by g cc a. The
occurrence of an action sequence in a run of one lA means that some behavior of the
lA contains the behavior represented by the action sequence.

Suppose that action sequence g = g{0)g{l) • • • g(m) occurs in run a e Sp.
If there exists an execution fragment 77 C a satisfying that ^ is a subsequence of
trace{ri) = aooi • • • On (n > in) and g{0) = ao, g{m) = an, then 77 is a proper
occurrence of g in a . Suppose that 770,771,... ,77„ C a are the proper occurrences
of action sequences gQ,Qi,. • • ,gn in a respectively. For any 7? C a , if (^(77) \
{first{r]), last{rj)}) H V{r]i) = $, i = 0,1,... ,n, then 77 is a proper inoccurrence of
Qo,Qi,---,Qn in oi.

Given a set £ of action sequences, for any lA P , Sp can be partitioned as two
subsets: 4'c{Sp) = {a e Sp\3 g e L. g (x. a] and 4>c{Sp) = Sp\ (j>c{Sp) • For
every run in <pc{Sp), there exists at least one action sequence in C that occurs in it.
For any run in (j)c{Sp), no action sequence in C occurs in it.

Definition 5 (conditional exclusive environment, CXE). Given an lA R and a set
C~ of action sequences, the exclusive environment of R under L" is an environment
E of R such that for any g G £.", if g occurs in a run a of R, then the proper
occurrence of g in a must be not covered by any run of R® E. If an exchisive
environment E of R under C" satisfies that for any g € C'^, if g occurs in a run a
of R then a must be covered by some run of R® E, where C^ is a set of action
sequences and £+ n £~ = 0, then E is a conditional exclusive environment of R
under exclusion condition C" and inclusion condition £+.

www.manaraa.com

Scenario-based Component Behavior Filtration 31

Let GXE {R : C^,C'^) denote the set of conditional exclusive environments of R
under exclusion condition C" and inclusion condition £+. If we consider £+ and C
as the representation of two sets of behavior, then all behavior of R which contain any
behavior in £~ isn't preserved in i? (g) J?, at the same time, all behavior of R which
contain any behavior in £+ is preserved in R® E, where E e CXE [R : C'^,C'^).
For arbitrary lA R and two sets C^,C^ of action sequences, it is possible that
CXE {R : £"",£+) = 0. It means that a CXE of R under exclusion condition C
and inclusion condition £+ may not always exist.

4 Construction of Conditional Exclusive Environment

We can use an lA, say R, to specify the behavior of a component, say COMP. An
user can give his or her undesired and desired behavior about COMP by two scenario
specifications in MSC, say 'SCENE""' and 'SCENE"*"' respectively. Filtering out the
user's undesired behavior from COMP and preserving the desired behavior amounts
to constructing a CXE for R under exclusion condition £ " and inclusion condition
£"•", where £^ , £+ are the sets of action sequences derived from MSCs 'SCENE"',
'SCENE"^' respectively. If there exists E e CXE {R : £",£"•") and we can construct
it, then all of the user's undesired behavior in R do not exist in i? ® i?, at the same
time, all of the user's desired behavior in R are preserved in R® E.

In this section, we will discuss how to construct a CXE E G CXE {R: C",C^)
for known lA R and two sets C^,C'^ of action sequences in detail, and give the
algorithm for constructing CXE.

4.1 Basic Approach to Constructing CXE

An environment of one lA, say R, can affect the runs of R only by the input actions of
R. For arbitrary input step r on arbitrary run of i?, if the label of r is a shared action
of R and its environment and the environment does not provide the input action for R
when R needs it, then R cannot go on along the run. For example, if the environment
does not provide input action cancel for lA Seller (see Fig. 1) when Seller stays at
state 3, then Seller cannot run along execution fragment " 3 cancel 4 exit 0 " back to
initial state. That the environment does not provide input action label{T) for R, when
R needs it, amounts to no corresponding step of T in the environment.

Suppose that 77 is a proper occurrence of some action sequence in £,~. Only by
not constructing the corresponding step in E for any input step r of i?, where first{rf)
is reachable from tail{T), the CXE E can make 77 not to be covered by any run of
Ri^iE. For ensuring all runs in </>£+ {ER) to be covered by runs of i? ig) i?, the input
step T should not be in any run in (f>c+ (ER) • We can find all such input steps in R by
traversing all runs in <f>c-{Sji). But, if there exists a loop (i.e., execution fragment
77 with firstirj) = last{r])) in some run, then SR is an infinite set and the lengths of
some runs in SR , i.e., the number of steps in a run, may be also infinite. Accordingly,
4>£,^ (SR) , (pc+i^R) ^^^ the lengths of some runs in them may be infinite. Thus, it
is unfeasible to traverse all runs in ^£ - {SR) directly. For getting a feasible approach,
we introduce the concepts of the simple run and simple loop.

www.manaraa.com

32 Yan Zhang, Xiaofeng Yu, Tian Zhang, Xuandong Li, Giioliang Zheng

Given an lA i? and a set C of action sequences, a run a = woaoflai • • • an-iVn
of i? is a simple run when it satisfies the following conditions:

1. if a e <t>c{^R). then there is Vj ^ Vj (0 < j < n,0 < j < n, z 7̂ j);
2. if a e 4>C{SR) , then (a) for any proper inoccurrence r] = UjaiVj+i • • -aj^iVj

{0 < i < j < n) in a, there is Vg j^ Vt (i < s < j ,i < t < j ,s y^ t);
and (b) for any proper occurrence (of g = g(0)e(l) • • • g(m) e £ in a , if
there is (' = w^ajfj^-iai+i • • -GJ^IVJ E C (0 < « < i < ?^), and ai = g{k),
aj_i = g{k+l) ,0 <k <m, then there isv^ yi^ vt {i < s < j ,i <t < j ,s ^t).

We put some constrains on runs to get the definition of the simple run. The
meaning of the condition 1. is that there is not any loop in a simple run without
occurrence of action sequences in £ . The meaning of the condition 2a is that there
is not any loop in a proper inoccurrence of action sequences in a simple run. The
meaning of the condition 2b is that in a proper occurrence of an action sequence in a
simple run, there is not any loop between the occurrence of two neighbor actions in
the action sequence. The set of all simple runs of lA R under £ is denoted by J?^.
Similarly, J7^ can be partitioned as (f>c {^R) and (pc (^R) •

Given an lA i? and a set £ of action sequences, an execution fragment 77 =
ViQiVi+iai+i • • • aj^iVj e FR (i < j) is a simple loop if: (1) Vi = Vj , Vi, Vj ^ F^"**,
(2) Vs T^ vt {i < s < j ,i < t < j , s ^ t) md 0) \/ a e 4>c {^R) •r]%a.

The first and second conditions ensure that except the first and the last states,
there aren't duplicate states in a simple loop. The third condition ensures that a sim
ple loop isn't the loop in a proper occurrence of some action sequence in £ . For
given lA R and set £ of action sequences, 6*^ denotes the set of all simple loops
of R. We say that simple loop 77 e 0;^ associates with simple run a G QR if
V{ri) n V{a) ^ 0 or V{ri) (1 V{rj') y^ 0, where rj' € O^ associates with a. Let
tpc {^R) = i'? G ̂ R I 3 a G ̂ £ {^R) • V associates with a} be the set of all simple
loops associated with simple runs in (j)/: {^R) •

Notice that every step in any run in ER corresponds to a step in some simple
run in J?^ or in some simple loop in O^. However, /2^ and O^ are finite sets and
the lengths of all simple runs and simple loops are finite. Furthermore, cpc {^R) and
tpc {€>R) are finite sets.

Additionally, we also notice that it is impossible to eliminate the undesiied behavior
represented by £> G £~ from R® E hy not constructing the corresponding step in
E for any step in R "after" the proper occurrence of g. A step T "after" a proper
occurrence rj means that head{T) = last{rj) or headir) is reachable from last{r}).

Suppose that C is a proper occurrence of £> e £~ in a simple run a of lA i?. We
call a prefix 77 of a as the minimal simple prefix about (if (is a suffix of 77, where
a prefix of a is an execution fragment rjin a and first(ri) — first{a); a suffix of a is

an execution fragment 77 in a and last{rj) = last{a). Let A^- (f2^ j denote the set
of all minimal simple prefixes about all proper occurrences of any action sequence in
C" in any simple run of R, i.e.,

^c- {^R) = \i]\3geC~ .Bae QR . ((is a proper occurrence of gin a) f\

(77 is the minimal simple prefixabout C, in a)\.

www.manaraa.com

Scenario-based Component Behavior Filtration 3 3

For any 7] e Xc- (^R) , there must be a proper occurrence of some g £ C in
7], and there is not any step "after" the proper occurrence in rj.

Theorem 1. For arbitrary !A R and sets C" ,C'^ of action sequences, if there exist

ri€Xc4^Ji) such that \/TQ7].label{T)^A^R, then CXE {R:C-,JC'')^ 9-

In [5], we prove that there maybe exist some kind of execution fragments in one
lA, say P, which cannot be covered by any run of P ® E , for any environment E of
P. Accordingly, we have the theorem as follows.

Theorem 2. For arbitrary lA R and sets Cr ^Cs^ of action sequences, there does not
exist any E G CXE {R : C~,C'^) if there are r/i,7]2 € FR, TJI ^ a and % E /?>
for some a e f i?^ U 0^ j and f3 G (<?!>£+ (i?^) U ip^+ (oj^) j , which satisfy

any of the following conditions: (1) rji = ViaVj and r}2 = Vjbvk, where i ^ j -^ k,
a ^ shared{R,E), b G AR fl shared{R,E) and b ^ AR{vi). (2) r?i = ViUVj
and r}2 = Vibvk, where i ^ j ^ k, a ^ shared(R, E), b G AR fl shared{R, E)
and b ^ AR{VJ). (3) rji = ViaiVi^itti^i • • • aj^iVj and 772 = Vibv[, where i < j ,
v[^ V{r]i), ct/c ^ shared{R, E), k = i,i + 1,... ,j ~ 1, b e ARD shared{R,E)
and 3v e V{r]i). b ^ AR{V) .

4.2 Algorithm of Constructing CXE

The skeleton of the constructive algorithm for CXE is described as follows. Step one,
for every minimal simple prefix about the proper occurrence of any action sequence
in C" in some simple run of R, traverse it from the first state and find the first input
step in it, which is not in any simple run with occurrence of action sequences in £+
or any simple loop associated with it. Step two, remove these input steps from R and
all unreachable states after the removal. Step thî ee, construct corresponding steps in
one lA for all residual steps in R.

Make the convention of ^ f = 0 and A^ = AR [5]. Let i? t ^ to denote the
LA obtained by removing all steps in T C TR from i?, and all unreachable states in
R after the removal. The algorithm of constructing CXE E G CXE (i? : £ - , £+) is
shown in Algoritlim 1.

We can prove that the return (in line 24) of Algorithm 1 is a CXE of R under ex
clusion condition C" and inclusion condition £+ since it is consistent to Definition 5 .
Thus, Algorithm 1 is correct.

About line 1 in Algorithm 1, we had given an algorithm to find which simple run
in an lA has the occurrence of a given action sequence in [6] and we can obtain those
sets in line 1 based on the algorithm. About line 22 in Algorithm 1, we had given a
method of constructing corresponding steps in [5].

Suppose that the maximal length of all elements in the set O^ U OR U OR is

n = max I length{f]) | r] G (oji U Q^^ U 6»g "̂) | , where lengthirj) is the number

of steps in 77. Suppose that mj = \4>c~ { ^R) | . ̂ 2 = |<PiC+ (̂ R) | are the number

www.manaraa.com

34 Yan Zhang, Xiaofeng Yu, Tian Zhang, Xuandong Li, Gitoliang Zheng

Algorithm 1 Constructing CXE EoflKR under exclusion condition £ and inclusion condition C^

Input: Interface automaton R and sets C , C^ of action sequences, C n £ '
Output; CXE E e CXE (K : £ " , £ +) ' .
Variables: T C TR , step r , lA R' and boolean found

Traverse R to get A^_ (o^''^,cl>^+ (^ ^ R " ' ') and I /)^+ (O^^'] .

if some execution fragment satisfies the conditions of Theorem 2 then
return E doesn't exist // by Theorem 2

else
r —0
for all r; € A^_ (HR) do

found< true
T ^ the first step in rj If head{r) ~ first{7^) A r C 77

9: while (label(T) ^ ytjj V 3 C S (0 ^ + (^ S ^) U i/>^+ (® R ^)) • "̂ E C) A found do
10: if r is not the last step in rj then // taU{T) ^ la3t{r]) A r C j ;
11: r -*— the next step in 77
12: else found-*— false
13: end it
14: end while
15: if found then T < T U { r }
16: else return E doesn't exist // by Theorem 1
17: end if
IS: end for
19: R' <— RIT
20: Initialize B : VE '•— {«o} , V^"'* < {«o}
21: for all r e T^i do
22: Construct the corresponding step of r in £?
23: end for
24: return E
25: end if

of simple runs in (/>£- f Q^) , <̂ £+ ! J7^ j respectively, and k = •?/'£+ (0 ^

are the number of simple loops in ip£_+ (G^) . In the worst case, line 6 to 18 in

Algorithm 1 can be done in O ((m2 + k)mi'nP) time. According to [6] and [5], line 1
and line 22 in Algorithm 1 need 0((TOI + m2)n) and 0{\VR'\) time respectively,
where |Vfl/| is the number of states of lA R'. In general, there are length(rj) -€.
length{a) for r] € 0 ^ and a e Qji and \VRI\ < (mi + m2)n. Hence, the
complexity of Algorithm 1 is O {mim2'n?) •

Example 3. Suppose that MSCs 'EXIT' (Fig. 2(a)) and 'SALE' (Fig. 2(b)) describe
a user's undesired and desired behavior about lA Seller (Fig. 1) respectively. That
is, the user does not want the process of ordering to be terminated by cancellation.
By Algorithm 1, we can obtain a CXE E (Fig. 4) of the lA Seller under exclusion
condition C^ and inclusion condition £s . which are two sets of action sequences de
rived from MSCs 'EXIT' and 'SALE' respectively (see Example 2). The intermediate
result R' (see line 19 of Algorithm 1) is shown in Fig. 3 . It can be found that the
user's undesired behavior of Seller is discarded in the composition of Seller and E,
i.e., Seller ® E (Fig. 5). At the same time, the user's desired behavior of Seller is
preserved in Seller ig) E.

5 Related Works and Conclusion

In this paper, we give an approach for filtering the undesired behavior and preserving
the desired behavior of components based on scenario specifications.

www.manaraa.com

Scenario-based Component Behavior Filtration 35

•# © 9 w- w V • " — — • • w—

It f 1? f

Fig. 3. lA R'. The intermediate result of Algorithm 1 with inputs Seller, CE and Ca

i ~.T tT aT T̂ iT T̂ iT iT a T —

Fig. 4. The CXE E of Seller under exclusion condition CB and inclusion condition £s

In [1,2,7], the authors mainly solve the behavioral compatibility of components
composition, but do not concern whether all behavior of the composition are the needs
of users. By using environment, our approach can filter out undesired behavior from

fail;
ship^oh: ^ hillinu:

(0 , 0) | (1,1) (2,1)

(13,11) (16,13)

(18,14)

Fig. 5. Seller ® E. The composition of Seller and E

www.manaraa.com

36 Yan Zhang, Xiaofeng Yii, Tian Zhang, Xiiandong Li, Giioliang Zheng

components or compositions in terms of the user's requirements. The most pertinent
research is to automatically synthesize a connector for restricting the behavior of
the composed components to the desired behavior specified by temporal logic based
specifications [8,9]. Contrary to [8,9], the environment in our approach adjusts the
behavior of components only by the inputs, and our algorithm is better in complexity.

References

1. Bracciali, A., Brogi, A., Canal, C : A tbrmal approach to component adaptation. Journal of
Systems and Software 74(1) (2004) 45-54

2. Yellin, D.M., Strom, R.E.: Protocol specifications and component adaptors. ACM Transac
tions on Programming Languages and Systems 19(2) (1997) 292-333

3. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Proceedings of the 9th Annual
ACM Symposium on Foundations of Software Engineering (FSE 2001), ACM Press (2001)
109-120

4. ITU-TS: ITU-TS recommendation Z.120: Message Sequence Chart (MSC). ITU-TS, Geneva
(1999)

5. Zhang, Y., Hu, J., Yu, X., Zhang, T, Li, X., Zheng, G.: Deriving available behavior all out
from incompatible component compositions. In: Proceedings of the 2nd International Work
shop on Formal Aspects of Component Software (FACS'05), Electronic Notes in Theoretical
Computer Science (2006) (To appear).

6. Hu, J., Yu, X., Zhang, Y, Zhang, T, Wang, L., Li, X., Zheng, G.: Scenario-based ver
ification for component-based embedded software designs. In: Proceedings of the 34th
International Conference on Parallel Processing Workshops (ICPP 2005 Workshop), IEEE
Computer Society (2005) 240-247

7. Schmidt, H.W., Reussner, R.: Generating adapters for concurrent component protocol syn
chronisation. In: IFIP TC6/WG6.1 Fifth International Conference on Formal Methods for
Open Object-Based Distributed Systems, Kluwer (2002) 213-229

8. Inverardi, P., Tivoli, M.: Software architecture for correct components assembly. In Bernardo,
M., Inverardi, P., eds.: Formal Methods for Software Architectures. Volume 2804 of Lecture
Notes in Computer Science. Springer-Verlag (2003) 92-121

9. Tivoli, M., Autili, M.: SYNTHESIS: a tool for synthesizing "correct" and protocol-enhanced
adaptors. L'Object Journal 12(1) (2005)

www.manaraa.com

Mobile Ambients in Aspect-Oriented Software
Architectures

Nour Ali, Jennifer Perez, Cristobal Costa, Isidro Ramos, Jose A. Carsi

Department of Information Systems and Computation
Polytechnic University of Valencia

Camino de Vera s/n
E-46022 Valencia, Spain

{ nourali, jeperez, ccosta, iramos, pcarsi }@dsic.upv.es

Abstract. Nowadays, distributed and mobile systems are acquiring importance
and becoming widely extended for supporting ubiquitous computing. In order
to develop such systems in a technology-independent way, it is important to
have a formalism that describes distribution and mobility at a high abstraction
level. Ambient Calculus is a formalism that allows the representation of
boundaries where computation occurs. Also, distributed and mobile systems arc
usually difficult to develop as they need to take into account functional and
non-functional requirements and reusability and adaptability mechanisms. In
order to achieve these needs it is necessary to separate the distribution and mo
bility concerns from the rest of the concerns. PRISMA is an approach that inte
grates the advantages of Component-Based Software Development and Aspect-
Oriented Software Development for specifying software architectures. In this
paper, we describe how our work combines Ambient Calculus with PRISMA to
develop distributed and mobile systems gaining their advantages.

1 Introduction

In the last few decades, the information society has undergone important changes.
New technologies have become part of our daily life and the Internet has been estab
lished as a framework for global knowledge. For these reasons, two important ideas
have been arisen; the world is considered as a whole unit with no boundaries, and
people work in a collaborative way without meeting physically. These ideas have cre
ated the need for current software development processes to deal with complex struc
tures, new non-functional requirements, dynamic adaptation, and new technologies. In
addition, most software systems require the capability to work with different devices
(PCs, laptops, PDAs, smart phones, etc) through communication networks in a dis
tributed and secure way. As a result, software development processes must also take
into account the distributed, ubiquitous and mobile nature of software systems.

The development of distributed, ubiquitous and mobile software systems is a diffi
cult task, especially if these characteristics are to be considered firom the begiiming of
the software life cycle. Currently, decisions about these characteristics are usually
postponed to late stages of the software life cycle (design and implementation). As a

Please use the following formatwhen citing this chapter:

Ali, N., Perez, .T., Costa, C, Ramos, I., Carsi, J.A., 2006, in IFIP International Federation for Information Processing,
Volume 227, Software Engineering Techniques: Design for Quality, ed. K. Sacha, (Boston: Springer), pp. 37-48.

www.manaraa.com

38 NourAli, Jennifer Perez, Cristobal Costa, Isidro Ramos, Jose A. Carsi

result, there is a loss of traceability, and the system is subject to a specific technologi
cal platform (such as CORBA [1] or .NET Remoting [2]), As a result, the develop
ment of systems of this kind introduces important challenges such as: how to specify
distribution and mobility features in a technology-independent way, how to consis
tently manage a distributed state, how to support non-functional requirements such as
security or fault tolerance.

Software Architecture is considered to be the bridge between the requirements and
implementation phases of the software life cycle. Software Architectures describe the
structure of software systems in terms of computational (components) and coordina
tion (coimectors) units of software. Architecture Description Languages (ADLs) spec
ify the functional and coordination properties of these software units in a formal way.
However, cmrent ADLs do not provide constructs for describing distribution or mo
bility features in an abstract way.

A foixnalism that provides mechanisms to describe distribution and mobility prop
erties is Ambient Calculus (AC) [3]. AC introduces the concept of ambient, which
represents boundaries where computation occurs. Ambients can model the location
hierarchy encountered in distributed systems and model the mobility as the crossing
of tlie locations boundaries.

PRISMA [4] is an approach that integrates the advantages of Component-Based
Software Development (CBSD) [5] and Aspect-Oriented Software Development
(AOSD) [6] to specify software architectures. This approach has a meta-model [4],
formal Aspect-Oriented Architecture Description Language (AOADL) [7], and a
framework [8].

In this paper, we combine the PRISMA approach and the AC in order to deal with
the specification of distributed and mobile features from the begirming of the software
life cycle in a technology-independent way. In this work, ambients are specified as ar
chitectural elements that use separation of concerns (aspects) to describe their func
tionalities.

The paper is structured as follows: Section 2 presents related works perfonned in
the area of distribution at an architectural level. Section 3 presents the PRISMA ap
proach and the motivation for the work presented in this paper. Section 4, gives an
overview of AC. Section 5, introduces how the PRISMA approach combines ambi
ents. Finally, Section 6 presents conclusions and further works.

2 Related Work

One of the reasons why software architectures emerged was to simplify the construc
tion of dynamic distributed systems. However, at the present time, few ADLs support
the specification of distributed systems properties. The first research that provided
significant results in distributed software architectures was carried out in the Darwin
ADL [9]. Darwin uses Ti-calculus [10] to define the semantics of distributed message-
passing. It builds architectures by defining composite components that are bound and
given locations at instantiation time. Darwin has also been used in the CORBA envi
ronment to specify the overall architecture of component-based applications [11].
However, in the literature, we have not found new advances to Darwin in constructing

www.manaraa.com

Mobile Ambienls in Aspect-Oriented Software Architectures 39

software architectures with mobile and rephcable components. As Darwin is based on
Tc-calculus only, mobility can only be simulated by the movement of channels. It lacks
primitives to express the movement of crossing boundaries.

The work in [12] states that an ADL should consider features such as composition,
reusability, and configuration in order to specify dynamic distributed software archi
tectures. It presents a configuration language that describes a method for a reconfigu
ration model at run-time. However, the reconfiguration model is not formal. More
over, it neglects a distribution model for specifying distributed message-passing
among components and connectors.

The works of Mascolo and Ciancarini [13,14] introduce MobiS, which is a specifi
cation language that is based on a tuple-space model that specifies coordination by
multiset rewriting. MobiS can also be used to specify architectures containing mobile
components. However, it does not specify the mobility concern separately from the
rest of the functionalities of the software architectures, reducing reusability and
adaptability to changes.

The ADL C2Sadel has adapted a style to support both distribution and mobility.
The style [15] provides software connectors that are able to move components. It also
has an implementation infrastructure to support this architectural style. However, this
approach has the drawback that there is no separation between coordination and dis
tribution. Therefore, the components are the only architectural elements that are mo
bile while the connectors are static.

The work of Lopes in [16] describes the semantics of externalizing a distribution
dimension in order to support distribution and mobility for software architectures.
This distribution dimension is very similar to a connector, but instead of containing
the business logic, it controls the rules for mobility and location. In this way, a separa
tion between computation, coordination and distribution is achieved. A difference be
tween our work and Lopes's work is that our work defines the semantics of distribu
tion and mobility by using Ambient Calculus. This allows our approach to have an
explicit primitive to represent a location with boundaries allowing the specification of
security and authentication.

3 PRISMA Distribution and Mobile Model

The PRISMA model [4] allows the definition of software architectures of complex
software systems by integrating the AOSD and the CBSD. PRISMA uses the AOSD
to separate the crosscutting concerns (distribution, security, context-aware, coordina
tion, etc.) of architectures in aspects. The PRISMA architectural elements are speci
fied using aspects that define their behaviour. As a result, an architectural element
(components and connectors) can be viewed as a prism where each side of the prism
is an aspect (white box view). In addition, an architectural element encapsulates its
functionality and publishes a set of services that it offers to the rest of the architectural
elements (black box view) (see Figure 1).

There are two kinds of architectural elements: components and connectors. A com
ponent is an architectural element that captures the functionality of software systems
and a connector is an architectural element that acts as a coordinator among other ar-

www.manaraa.com

40 NourAli, Jennifer Perez, Cristobal Costa, Isidro Ramos, Jose A. Carsi

chitectural elements. Components and connectors are formed by a set of aspects, the
weaving relationships among these aspects, and the ports that offer and request ser
vices.

TD LJ

Z3

White Box View

Porta
Architectural

Element

Port1

?
Black Box View

Fig. 1. Views of an Architectural Element

Weavings indicate that the execution of an aspect service can trigger the execution
of services in other aspects. Weavings are the glue of the aspects of an architectural
element. This glue is defmed using temporal operations called weaving operators. Ini
tially, the weaving operators that PRISMA provides are after, before, around, afterif
beforeif, and insteadif. For example, if a weaving with the after operator is specified
between service si of aspect Al and service s2 of aspect A2, this means that s2 of A2
is executed after si of Al.

It is important to emphasize that connectors do not have the references of the com
ponents that they connect and vice versa. Thus, architectural elements are reusable
and unaware of each other. This is possible due to the fact that the charmels {attach
ments) defmed between components and coimectors have their references, instead of
architectural elements. Attachments are the channels that enable the communication
between components and coimectors. Each attachment is defined by attaching a com
ponent port with a connector port (represented as lines in Figure 2).

However, when we applied PRISMA to a real case study such as the tele-operated
TeachMover robot local communication was a limitation. Tele-operation systems are
control systems that depend on software to perform their operations. They are usually
robots that perfomi high-risk activities. For this reason, they must be controlled by
operators from safe areas. As a result, the need to locate components in different
places (nodes) as well as to communicate the distributed software components of the
operator and the robot emerged.

Operator
Node1

:«oormectorS]| i
iCnptRobot •

Robot
Node 2

Operator

Nodet

:<conneotorSI| j
ICnctRobot

Robot

a) Architecture Configuration between the
Operator and a Tele-Operated Robot

b) The reconfiguration of the architecture
caused by the movement of the Operator

Fig. 2. Mobility of the Operator in a Tele-Operated System

Mobility is also a characteristic that is fimdamental in distributed and dynamic sys
tems, where the topology of the architecture can change at mn-time. For example, in
the tele-operated system, the mobility requirement emerges to be able to move the op
erator to different places (nodes). This mobility is necessary to allow the operator

www.manaraa.com

Mobile Ambients in Aspect-Oriented Sojhvare Architectures 41

send commands to the robot from different places, maintaining the information of the
operator component consistent (see Figure 2).

As Figure 2 illustrates, mobility is the process of transferring a component instance
from one node to another one. Moreover, the transfer process must ensme that the
transferred component instance continues its execution at the target node, conserving
its state and maintaining the same execution porat.

PRISMA has been adapted to support distribution and mobility properties [17] in
order to be applied to real case studies. Distribution is supported in PRISMA by in
troducing the following properties into the model:

1. The use of attachments: Attachments store, not only the references of the architec
tural elements that they are connecting, but also the locations of these architectural
elements (nodes). In this way, the reusability of architectural elements is preserved,
and distributed communication is enabled. As a result, architectural elements are
unaware of the distributed or local nature of the others.

2. The use of a Distribution Aspect: The distribution aspect specifies the features and
strategies that are related to the distributed behaviour of a PRISMA architectural
element. It specifies the site where the architectural element is located and indi
cates when an element needs to be moved.

This distribution model was initially implemented in the PRISMANET middleware
[8] and has been validated using case studies where distribution properties are re
quired. However, a model that includes an explicit primitive for supporting locations
as boundaries, describes the location hierarchies and supports the mobility of ele
ments by the crossing of boundaries is richer. Therefore, we have combined the
PRISMA model and AC.

4 Ambient Calculus

Ambient Calculus [3] (AC) is a process algebra that extends 7i-calculus [11] in order
to introduce the concept of ambient. An ambient is a bounded place where computa
tion occui-s. Thus, an ambient can be anything with a boimdary such as a laptop, a
web page, a folder, etc. Each ambient has a set of running computations that can con
trol it. These are responsible for moving an ambient. In addition, an ambient can con
tain other subambients that have running computations.

Thus, mobility is performed at an ambient level, i.e. ambients are mobile. Also,
mobility is performed by crossing boundaries of ambients. AC provides mobility and
local communication primitives. These primitives can be expressed in a textual syntax
and in a graphical syntax which is called Folder Calculus [20] (see Figure 3). Folder
Calculus is a graphical metaphor for AC where ambients are visually represented as
folders.

AC uses some of the constructs inherited from Ti-calculus such as naming, restric
tion, parallel processes, inactive process and replication. However, the names in AC
are names of ambients instead of names of channels as in 7i-calculus. Therefore, in
order to syntactically write that an ambient with name n has process P, it is written as
n[P].

www.manaraa.com

42 NourA/r, Jennifer Perez, Cristobal Costa, Isidro Ramos, Jose A. Carsi

Tmim\%'msx ViimMimsx Commmh

(vii)? , 1 — r -

.[.PI

MP

f-Q

F\
''

KD
P Q

Neiv mms- f? iu a scope P.

Folder (smbiesit) of uaaie ?i mi zonxtim P.

Acrioi! UMlm'td by P.

Two processes ia parallsl.
(ViEiisliy: cQSti^ysly placed in 2D,)

T^.yiiial Syntax

0

iP

tw

OifJ"

CP)

Fiiwsf.?T/ifn,v

O

i
\ i)

o

C>s(/H^«rs

"lisaclive prwesi; (ofteu ciiutted).

?.epl!C.;tion of P.

Output M

lapuUi joljsvv^dby?.

f-iTf5l!pnP

Fig. 3. The Textual and Visual Syntax of Ambient Calculus constructs

Some of the primitives that AC provides are called capabilities. Capabilities are ac
tions that can be performed on ambients. There are three main types of capabilities:
enter, exit and open capabilities. The enter capability orders an ambient to enter an
other ambient on its same hierarchy level (see Figure 4). The exit capability orders an
ambient to exit its parent ambient. The open capability dissolves an ambient leaving
the processes that were in it.

fiti'Viii-fi^J'^

p
Q

Fig. 4. Applying the enter capability to the ambient n

AMBIENT-PRISMA: Combining Ambient Calculus and the
PRISMA Approach

This section presents how the AC concepts are integrated to the PRISMA approach in
order to describe distributed and mobile systems. To allow PRISMA architectural
elements to make use of the ambient concept of AC, the ambient construct must be
included in the PRISMA meta-model. Therefore, some mappings between the AC
meta-model and the PRISMA meta-model have been identified.

In [18], it is discussed that an ambient can be seen as a software component that of
fers mobility and that it has a proper identity at run-time so that it can be maintain
able. In our model, this corresponds to a PRISMA architectural element. Since
PRISMA architectural elements are components and connectors, an ambient cannot
be a PRISMA Component because a PRISMA component performs the computations.
Nor can the ambient be a PRISMA Connector because a PRISMA Connector coordi
nates computations. Therefore, in the PRISMA mqta-model an ambient is introduced
as a new type of architectural element (see Figure 5) that is responsible for providing
mobility sevices to distributed architectural elements. As a result, an ambient inherits
all the characteristics of a PRISMA architectural element (its CBSD view and its
AOSD view) and provides its proper semantics. Figure 6 shows the graphical repre-

www.manaraa.com

Mobile Ambients in Aspect-Oriented Software Architectures 43

sentation of a PRISMA ambient. The graphical representation preserves the folder
calculus representation of an ambient. The Ambient CBSD view describes it as a
black box where it communicates with others by using ports that send and receive in
vocations of services.

Weaving
(from Weaver)

^ o p e r a t o r ; string

Port
(fram Port)

10
Ijas ArohitecturalElement

•ĝ p̂ name

T
impoits

Aspect
(from A^ects)

^concern
"Siiname

Component
(from Components)

Connector
(frtjm Connectors)

Ambient
(from Ambients)

Fig. 5. Including the Ambient as another architectural element

An ambient has a collection of local agents and can also have other subambients
[18]. In PRISMA, the local agents correspond to components that are coordinated us
ing connectors. Ambients in PRISMA are complex architectural elements that repre
sent the places where components, connectors and other ambients are located. In addi
tion, by allowing an ambient to have other ambients inside it, the hierarchy of
distributed and mobile systems can be modelled in PRISMA.

A m b i e n t

Fig. 6 A PRISMA Ambient with CBSD and AOSD views

The AOSD view describes the PRISMA ambient with a set of aspects that can be
weaved. The ambient uses different aspects to specify the services it offers and re
quests. As ambients are responsible for the mobility concern, all ambients must have
the Mobility Aspect to provide mobility services to their local architectural elements.

The Mobility Aspect specifies the following ambient functionalities:

- It allows an ambient to offer the exit sei"vice to its subambients that need to exit
from it. (The specification of the AC exit capability).

- It allows an ambient to offer the enter service to its subambients that need to enter
other subambients. (The specification of the AC enter capability).

- It allows an ambient to create subambients. (The specification of the AC restric
tion).

- It allows an ambient to accept a new ambient in it from external ambients.
- It allows an ambient to execute the open service. The open service allows a

subambient to be destroyed a local ambient without destroying its local architec-

www.manaraa.com

44 Nour AH, Jennifer Perez, Cristobal Costa, Isidro Ramos, Jose A. Carsi

tural elements. As a result, the architectural elements of the destroyed subambient
become to form part of the ambient. (The specification of the AC open capability)

The separation of the Mobility Aspect concern from the rest of concerns provides a
better maintainability of these functionalities because they are not scattered through
the ambient specification. In addition, this is a generic aspect that must be reused by
all PRISMA ambients. As a result, ambients are defined by importing the generic mo
bility aspect and adapting it to the software system needs through weavings. For ex
ample, a LAN ambient may need some security policies that are different from a PC
ambient inside of the LAN. Therefore, both the LAN and PC ambient import the same
Mobility Aspect, but the Mobility Aspect is weaved with different security aspects.

<0s Ambient
{{self.Aspect.concem="Mobilitj'") --> exist)}

Each ambient must have a Mobility Aspect.

Fig. 7. The Ambient Package in the PRISMA meta-model

In order to introduce the concepts that describe a PRISMA ambient, an Ambient
Package has been defined in the PRISMA meta-model(see Figure 7). This package
contains the relationships and constraints that an ambient has with other meta-model
concepts. An Ambient can contain Components, Connectors, Attachments, and other
ambients. A constraint is specified in the Object Constraint Language in order to in
dicate that an Ambient must have a Mobility Aspect.

LANTS

f i - . «cofinectDrH ^-pT___j—

' T Cncmiibo! T

Fig. 8. The Initial Configuration of the Robot software architecture modeled with Ambients.

We are going to use the tele-operation system example to illustrate how a distrib
uted and mobile system is specified in PRISMA after introducing the ambient archi-
tectm'al element. In the example, the operator is a mobile component that can move
from a PC to a PDA to be closer to the robot. Figure 8 shows the distributed hierarchy
of the tele-operation software architecture. It shows that the LANTS ambient (the LAN
of the Tele-operation System) consists of a PDA ambient and a PC ambient. The Op
erator component, Robot component and their connector (CnctrRobot) are initially

www.manaraa.com

Mobile Ambients in Aspect-Oriented Software Architectures 45

located in the PC ambient. Using the ambient calculus syntax, this is written as
LANTS[PDA[]\ PC[Operator[outPC, in PDA]. CnctRobot, Robot].

Every ambient has services that are offered to its local architectural elements and
services that are offered to the exterior. As a result, some of the ambient ports in Fig.
8 are only internally coimected through attachments to a coimector (e.g. the PCCnctr
of the PC) that synchronizes the ambient with its local architectural elements.

Figure 9 (b) shows how the Operator Component is specified in the PRISMA
ADL. As the Operator is a distributed component, it imports a predefined Distribu
tion Aspect OpDistribution, specified in Figure 9(a), which defines a distributed be
haviour. The Operator has three ports: ExitingPort to request an exit, EnteringPort to
request an enter, and FunctPort to send commands to the robot. The OpDistribution
specifies the move. Move indicates that the movement of the element that imports this
aspect needs to exit from its parent ambient and then enter to another ambient. For
this reason, requests for enter and exit are made to other architectural elements {out =
client behaviour). For example in Figure 8, to move the Operator from the PC to the
PDA, the Operator makes a request to exit the PC from the PC. Figure 8 also shows
that the ports ExitigPort and EnteringPort are connected to the PCCnctr in order to be
synchronized with the PC ambient. FunctPort is connected to CnctRobot to be syn
chronized with the Robot

Con5Jon6nt_type Operator
Import Distribution Aspect OpDistribution;

Import Functional Aspect OpFunct;

Port

ExitingPort: lExiting;

EnteringPort: lEntering;

FunctPort; IRobotCotnmands,;

End_Port

End Component type Operator;

(b)

Distribution Aspect OpDistribution
using lExiting, lEntering

Services

out exit (MyName: String);
out enter (MyName: String, NewAmbient: loc)i

Transactions move(NewAmbient: Xoc)
Exiting= out exit(MyName).Entering;
Entering= out enter(MyName, NewAmfoient);

End Distribution Aspect OpDistribution

(a)

Fig. 9. The Operator Distribution Aspect and Component specified in the ADL

Mobility Aspect Mobile
using lExi t ing , lEntering, lAccepting

Transactions in exit(Requested; String, NewAmbient: l oc) :
EXIT :;= oat isSon(input Requested, output isSonOK)-^

EXITl;
E){1T1::= {i3SonOK==true} out chec3cTypeAmbient (input

Requested, output isTypeAmbient) -^
EXIT2;

EXIT2::= if{isTypeAfflbient==false)then
createZynbientFor (input
Requested^ output RequestedAinbient ">
EXIT3 e l s e EXIT3 ;

EXIT3::= out movinginf(input RequestedAmbient, output Type,
output Mobiielnstance, output AttachmentList[j) ">
EXIT4;

EXIT4::= out accept(input Type, input Hobilelntstance, input
AttachmentsList, output Acceptance)-^ EXITS;

EXITS: := {Acceptance=--=true) out modifyAttachment (Requested)->
EXIT6;

EXIT6::= out destroy(RequestedAmbient)->EXIT7;
EXIT7::= out removeAttachments(requestedAmbient);

End Mobility Aspect Mobile

(a)

Ambient type PC
Import M o b i l i t y Aspec t M o b i l e ;

Import S e c u r i t y Aspec t Sec ;

Weavings
S e c . C h e c k S e c u r i t y () b e f o r e

M o i l e . e x i t { R e q u e s t e d , Ne
wAmbient) ;

End_Weav i ng s

P o r t s
A c G c e p t a n c e P o r t : l A c c e p t ;
D i s t S e r v i c e s P o r t : I C a l l ;

S e r v i c e s P o r t : I C a l l ;
C a p a b i l i t i e s P o r t : I C a p a b i l i t y

End_Ports

End Anibient__type PC ;

(b)

Fig, 10. The Mobility Aspect and the PC Ambient specified in the ADL

www.manaraa.com

46 NourAli, Jennifer Perez, Cristobal Costa, Isidro Ramos, Jose A. Carsi

Figure 10(a) shows a fragment of the MobiUty Aspect Mobile that all ambients im
port. It shows how the exit capability is mapped in PRISMA. Figure 10(b) shows the
specification of the PC ambient. It shows that the PC imports the behavior that the
Mobile aspect defines. It also shows that it imports a Security Aspect Sec. In the
Weavings section, a weaving is specified to indicate that a security rale must be
checked in the Sec aspect before the exit is executed in the Mobile aspect.

Fig. 11. The new configuration of Figure 8 after the execution of the exit

The exit in Figure 10(a) is specified as a transaction in the Transactions section.
The exit has a server behaviour in the ambient that imports the aspect, that is, other
architectural elements are going to request it (/«=server behaviour). Using the exam
ple in Figure 8, the Operator would be the element that makes an exit request to the
ambient. Then the exit Transaction consists of a set of services. First, it checks if the
requested element {Operator) is one of the PCs children (is one of its local elements).
If it is, then the exit checks if the requester is an ambient or not. If it is not an ambient,
then an ambient is created to encapsulate the element. The creation of an ambient is
necessary due to the fact that ambients are the only architectural elements that can be
mobile. Then the information needed for the exit of the Operator is collected: the
state of the Operator and its attachments. The exit transaction then asks the parent
ambient (LANTS) if it can accept the Operator's ambient (tempAm) and sends the
needed infomiation. If LANTS accepts the tempAm, for each attachment between the
Operator and other architectural elements, a new attachment is created between the
PCCnctr and those local architectural elements that are connected to Operator. Fig
ure 11 shows the new attachment that is created between CnctRobot and PCCnctr in
place of the attachment between CnctRobot and Operator. Then the PC ambient de
letes the Operator and all its attachments. Figure 11 shows the result of the software
architecture configuration after executing the exit transaction.

Finally, Figure 12 shows the Operator component in the PDA. This is possible af
ter the Operator in tempAm in Figure 11 requests the LANTS to enter PDA. Then, the
LANTS checks if the PDA is local to it and requests the PDA to accept the tempAm.
The PDA accepts tempAm and opens it, leaving the Operator in PDA.

The tele-operation system specification shows how its distributed and mobile prop
erties can be described. The previous specification benefits from the concepts intro
duced in AC; thus the mobihty of the Operator is specified in a formal way thanks to

www.manaraa.com

Mobile Amhients in Aspect-Oriented Software Architectures 47

the AC capabilities. Also, the AC primitives can be completely specified by the
PRISMA ADL in a technology-independent way. In this way, the ambient functional
ities can benefit from the reusability and maintainability that the AOSD and CBSD
provide.

Fig. 12. The configuration of the architecture when the Operator reaches PDA.

5. Conclusions and Further Work

In this work, we have presented an approach to represent complex, distributed and
mobile systems in a technology-independent. Our model combines the PRISMA ap
proach with the AC formaUsm, which provides the following advantages: 1) It can
describe a complex system in terms of computational, coordination and distribution
and mobility units on different levels of abstraction. In this way, a system is built by
reusing and adapting these separated units achieving a higher level of maintainability.
2) It can also describe the specific issues of current distributed systems such as the
network topology and security.

We have introduced the ambient concept in the PRISMA meta-model as a new ar
chitectural element that can contain several computation and coordination processes
(components and connectors) or other subambients. The capabilities provided by an
AC ambient are offered in PRISMA by an ambient-specific aspect called the Mobility
Aspect. Another aspect, the Distribution Aspect, manages the location of an architec
tural element and defines how and when ambient capabilities can be executed. A Se
curity Aspect can be added to an ambient in order to provide security mechanisms.
Mobility, distribution and security concerns are specified separately from other func
tional and non-functional requirements, thereby increasing reusability and adaptability
to changes.

In the near future, we are going to introduce these concepts into the PRISMA tool
to be able to model and execute mobile distributed software architectures. This will be
done in three stages: first, ambients will be introduced in the PRISMANET middle
ware [8] to execute these concepts; second, ambient graphical metaphor and code
templates will be introduced in the modelling framework; third, the implementation
will be validated by modelling and executing a complex, distributed, and mobile case
study.

www.manaraa.com

48 NoitrAli, Jennifer Perez, Cristobal Costa, Isidro Ramos, Jose A. Carsi

References

1. CORBA Official Web Site of the OMG Group, http://www.corba.org/
2. Microsoft .Net Remoting: A Technical Overview,

http://msdn.microsoft.com/library/default.asp7urWlibrary/enus/dndotnet/html/hawkremotin
g.asp

3. Cardelli, L., Gordon, A. D. "Mobile Ambients", Foundations of Software Science and
Computational Structures: First International Conference, FOSSACS '98, LNCS 1378,
Springer, 1998, pp. 140-155.

4. Perez, J., All, N., Carsi, J.A., Ramos, I. "Dynamic Evolution in Aspect-Oriented Architec
tural Models", European Workshop on Software Architecture, Pisa, June 2005 © Springer
LNCS vol n.3527.

5. Szyperski, C, Component Software: Beyond Object Oriented programming, ACM Press
and Addison Wesley, New York, USA, 2002.

6. Aspect-Oriented Software Development, http://aosd.net
7. Perez, J., Ali, N., Carsf, J.A., Ramos, I. "Designing Software Architectures with an Aspect-

Oriented Architecture Description Language", 9th International Symposium on Component-
Based Software Engineering (CBSE 2006), Malardalen University, Vasteras near Stock
holm, Sweden, June 29th -1st July 2006 (accepted to appear)

8. Perez, J., Ali, N., Costa, C , Carsi, J.A., Ramos, I. "Executing Aspect-Oriented Component-
Based Software Architectures on .NET Teclmology",3rd International Conference on .NET
Technologies, Pilsen, Czech Republic, May-June 2005 , 2005

9. Magee, J., Dulay, N., Eisenbach, S., Krammer, J. "Specifying Distributed Software Archi
tectures". 5th European Software Engineering Conference (ESEC 95), Sitges, Spain, 1995,
pp 137-153.

10. Miker, R., Parrow, J., Walker, D. "A calculus of mobile processes", Parts 1-2. Information
and Computation, 100(1), 1992, pp. 1-77.

11. Magee, J., Tseng, A, Kramer, J. "Composing Distributed Objects in CORBA", Third Inter
national Symposium on Autonomous Decentralized Systems, Berlin Germany, 1997, pp
257-263.

12. Virginia C. de Paula, G.R., Justo, Cunha, Ribeiro, P. R. F. "Specifying Dynamic Distributed
Software Architectures", XII Brazilian Symposium on Software Engineering, BCS Press,
October, 1998.

13. Ciancarini, P., Mascolo, C. "Software Architecture and Mobility", 3rd Int. Software Archi
tecture Workshop (ISAW-3), November, 1998.

14. Mascolo, C. "MobiS; A Specification Language for Mobile Systems". 3rd International
Conference on Coordination Models and Languages, 1999.

15. Medvidovic, N., Rakic, M. "Exploiting Software Architecture Implementation Infrastmc-
ture in Facilitating Component Mobility". Software Engineering and Mobility Workshop,
Toronto, Canada, May 2001.

16. Lopes, A. Fiadeiro, J.L., Wermelinger, M. "Architectural Primitives for Distribution and
MobiUty", 10th Symposium on Foundations of Software Engineering, SIGSOFT FSE 2002,
pp. 41-50.

17. Ali, N., Ramos, I., Carsi, J.A. "A Conceptual Model for Distributed Aspect Oriented Soft
ware Architectures", International Conference on Information Technology (ITCC 2005),
IEEE Computer Society, ISBN 0-7695-2315-3, April 2005, pp 422-427.

18. Cardelli, L. "Abstractions for Mobile Computation." In Vitek, J. and (Eds.), C. J., editors,
Secure Internet Programming: Security Issues for Distributed and Mobile Objects, volume
1603 of LNCS, Springer Verlag, pp. 51-94.

www.manaraa.com

The architecture of distributed systems driven by
autonomic patterns

Marcin Wolski, Cezary Mazurek, Pawei Spychata, Aleksander Sumowski

Poznan Supercomputing and Networking Center,
ul. Noskowskiego 12/14 Poznan, Poland

{maw, mazurek, spychala, sumek} @man.poznan.pl

Abstract. The autonomic computing notion has introduced the concept of self-
optimizing, self-healing and auto-diagnosis applications. In this article we
would like to present how this idea affects the building of distributed systems.
As a reference base, we take advantage of the Data Management System
(DMS), which has been developed within the scope of the PROGRESS project.
DMS enables the creation of a grid environment capable of storing large
amounts of data. The complex architecture of this system, which constitutes a
model of loosely coupled components, involves a special approach to its main
tenance and management. To address these problems, we have applied the
autonomic computing patterns in the DMS architecture. Our solution was de
signed to be reused in any project dealing with the same issues. It can also act
as an autonomic service for any other applications and services.

1 Introduction

Data grid systems have been designed to be up to complex data processing in a geo
graphically distributed environment and exact performance demands. Over the years
this class of systems has matured and at present they are offering a wide range of
functionality related to the management, collaborative sharing, publication, and pres
ervation of distributed data collections. This wealth of capabilities, however, compli
cates the managing of such large systems, increases its complexity as more heteroge
neous components are added, and makes it more difficult to find and solve any
technical problems. They constitute a typical example of an environment where ad
ministrators spend too much time doing repetitive tasks, monitoring the system bur
den, reacting when problems with performance arise or continuously blocking the
hackers' attacks.

The concept of the Service Oriented Architecture (SOA) [9,13], which common
implementation is based on existing Web services standards and specifications, helps
to deal with these inconveniences. The notion of a service is nothing new, but the con
cept of the SOA has evolved over the past couple of years. It is an architectural style
of building software applications that promotes loose coupling between components
so that you can reuse them. SOA makes it possible to construct architectures where
client applications can simply register, discover, and use the services deployed over
the grid.

Please use the following formatwhen citing this chapter:

Wolski, M., Mazurek, C, Spychala, P., Sumowski, A., 2006, in IFIP International Federation for Information Processing,
Volume 227, Software Engineering Techniques: Design for Quahty, ed. K. Sacha, (Boston: Springer), pp. 49-60.

www.manaraa.com

50 Marcin Wo/skr, Cezary Mazurek, Pcnvel Spychala, Aleksander Sumowskr

SOA itself narrows the focus on the overall system maintenance and management
but it does not cope with many problems derived from the complexity of distributed
systems. We need a solution which enables the system to automatically configure its
components, discover and correct faults, monitor and control resources and proactive
identify and protect from arbitrary attacks. Autonomic computing (AC) researches of
fer the most promising approach to addressing such challenges.

The conjecture of AC was inspired by IBM's autonomic computing initiative to
deal with the main problem in large and distributed systems - increasing complexity.
Autonomic means able to operate without conscious control of a human - similarly to
our heart or lungs controlled by our autonomic nervous system. AC generally has two
main goals: to reduce the work and complexity associated with a large system and be
able to better respond to rapid changes in the system.

In this paper we would like to present how the autonomic computing notion affects
the building of distributed systems. Moreover, the solution that we provided can also
act as an autonomic service for any other applications and services. As a reference
base, we take advantage of the Data Management Suite (DMSuite) [3,4] - a platform
of integrated services supporting data management processes in the grid environ
ments. DMSuite has been designed and developed in the scope of the PROGRESS
project [2] - an initiative undertaken within the PIONIER National Program [1] and
funded by the State Committee for Scientific Research and Sun Microsystems Poland.
Currently the Data Management Suite is a part of the Gridge (Grid Enterprise Solu
tions) [5], which covers the whole grid architecture, from tools and portals down to
core middleware.

The remainder of this paper is organized as follows: Section 2 introduces the back
ground and technical aspects of the AC model. Section 3 details the current imple
mentation of DMSuite and indicates its advancement in terms of autonomic comput
ing. Section 4 demonstrates some case studies taken from various projects using the
DMSuite software and presents a definition of autonomic patterns and its relationship
with the system architecture. Section 5 summarizes the paper with our conclusions
about building distributed systems on the basis of the SOA model and AC patterns. It
also indicates what will be held in the upcoming release of DMSSuite.

2 Autonomic computing design

Autonomic computing was introduced by IBM as a response to overwhelmingly in
creasing complexity of novel systems [12]. The process of growing complexity
threatened that at some future point of time computer systems would become a bur
den, covering its initial use.

The autonomic computing vision is based on an autonomic nervous system. Auto
nomic computer systems are supposed to be able to operate without human attention.
They are supposed to automatically interoperate between each other without the need
to tweak large amounts of switches and XML configuration files.

The system architecture built according to autonomic computing principles should
limit the hands-on intervention to uncommon cases which occur during the system's
regular work. This postulate could be fulfilled by applying predefined policies for

www.manaraa.com

The architecture of distributed systems driven by autonomic patterns 51

administrative operations which can take decisions leading to the system reconfigura
tion, basing on gathered knowledge during the system work. Such vision of the folly
self-managed system seems to be hard to realize, but it allows to determine the aim,
an ideal system architecture which uses different technologies and solutions for
achieving the assumed autonomic computing level. The autonomic computing archi
tecture can be understood as a continuum for a system,

2.1 Self-CHOP paradigm

There are four components that comprise the autonomic computing vision [11]:

• Self-configuring - means the ability to dynamically adapt to changing environ
ments. Self-configuring components use policies provided by the professional staff
to perform self-configure procedures. Such changes could include the deployment
of new components or the removal of the existing ones, or even remarkable
changes in the system characteristics.

• Self-healing - means the ability to discover, diagnose and react to malfonctions.
Self-healing components can detect system disruptions and initiate policy-based
repair procedures without any influence on the rest of the environment. Corrective
action could involve a product altering its own state or effecting changes in other
components.

• Self-optimizing - means the ability to monitor and tune resources automatically.
The tuning actions could imply, for example, reallocating resources (such as in re
action to dynamically changing workloads), improvement of the overall utilization,
or ensuring that particular transactions can be completed in a timely fashion.

• Self-protecting - means the ability to anticipate, detect, identify and protect against
threats from anywhere. Self-protecting components can identify hostile behaviors
as they occur and take appropriate actions to make themselves more resistant. The
hostile behaviors can include unauthorized access and use, vims infection and de-
nial-of-service attacks.

Those four ideas together form a self-CHOP paradigm which, in short, stands for
configuration, healing, optimization and protection.

2.2 Maturity levels

The autonomic computing architecture ideas could be realized in the developed sys
tem in a different way, in a different scope and on a different level. Following the
[14], there are five levels of maturity that refers to the state of implementation of the
autonomic computing recommendations. These levels are: basic, managed, predictive,
adaptive and autonomic. Although the distiibuted applications constantly evolve
along these stages, the general state of the novel system remains at the basic and man
aged levels. These two base levels do not allow the application to be aware of the sys
tem environment state.

The basic level defines an architecture which still requires human intervention and
expertise basing on their knowledge. The managed level is achieved when the envi-

www.manaraa.com

52 Marcin Wolski, Cezary Maziirek, Pawel Spychala, Aleksander SumoM'ski

ronment is equipped with some scripting and logging tools, allowing to automate rou
tine execution and reporting. The plans and taken decisions are based on this gathered
information; however, it still needs an individual specialists review.

Systems at a predictive level of autonomic computing maturity have a basic intelli
gence, which bases on predetermined thresholds and knowledge base, suggesting so
lutions according to the set of events stored at a centralized base and their common
occurrences and experience. The adaptive level defines environments that allow them
to take action themselves basing on predictive system capabilities according to the
arising situations.

The highest level of the autonomic computing system architecture is defined as
autonomic, which is understood as a policy-driven system, which is able to e.g. allo
cate resources according to priorities.

It is worth underlining that the system maturity levels evolve and there is no ap
proach to make a self-optimizing, self-protecting, self-configuring and self-healing
system.

3 Data Management Suite

DMSuite is a middleware platform providing a uniform interface for connecting het
erogeneous data sources over a network. It may stand for the backbone on which a
computational grid would perform its operations. The following figure depicts the
main components belonging to this integrated platform.

EXTERNAL
DATA
SOURCES

DATA MANAGEMENT SUITE ARCHITECTURE

GRID
MIDDLEWARES

ACCESS PORTAL

I •
FTP+ > ' SOAP

' DATA
MANAGEM
SYSTEM

E N I

System Events

MS

'SOAP

TOTH
LOG
SYS' rEM

CONSOLE

LOG VIEWER

Fig. 1. Data Management Suite architecture

The Data Management System and Toth constitute a base for our architecture that
combines autonomic and data grid technologies. The Data Management System is the
main part of Data Management Suite solutions. It is a middleware application based
on the SOA model that determines loose coupling between reusable components.
Similarly to computing and network resources, DMS provides services to manage and
retrieve data files in order to support grid jobs. The computational resources managed
by DMS can be described by metadata schemas which allow the creation of an ab
stract, semantic and explorable layer of resources.

www.manaraa.com

The architecture of distributed systems driven by autonomic patterns 53

The Toth Logging System simplifies the system administi-ation process by gather
ing all events incoming from distributed components of the DMSuite. It is based on
the JMS technology [15], which assures simple exchange of binary messages in the
asynchronous way.

3.1 Autonomic design

DMSuite has been built using some autonomic computing principles, such as self-
management, fault detection and self-configuration. The Data Management System
(DMS) - the key element of DMSuite - contains tliree logically distinguished mod
ules: Data Broker, Metadata Repository and Data Container [16]. Together they create
the basic layer of the data management environment, the so-called DMS core. DMS
architecture is comprised of distributed modules, each of them can be treated as a
separate service using XML messages to communicate with other applications.

•,V.''" *'•"- '••••' --isV/.i -'.5:**-. i.-'^J.V^' 'X.'".-v:v.• •».".:';; •J' • •
•y. - " c • ' T S W i f - : • . • * . . - • • - - . • " ' ; • . • • • . ' . • - ^ .^ i^ • i

• . •* ' . ' • ' ; • « J > ' J ^ .» •- - •• • ' . H - - . ' • ' ' • ' - ' ' ' • • . -

,•.;••'•• • isusav.^'"' \ v'--t.;.-'.-..' t - f . • • • i_\

» ' 1 1 • - i f t V* •*» f*.. ^ - ^ . • • > • ^ 1

• . - • •

1 '••

w'-:-
. : •

('• -

•;
, * . •

• ? ' . •*

• t

- ';,
•' .:
-V.' •'

•-. .J.

.-

>' • •

• . .

*_,

f.
^

k

"m&
• - . - . '•

•ri ' i- , .
, - iS5^': .

• • . - - - * • • \ •

> * - > . - - - • •

Iff.--..

J W f t M . " 1 ^^ . . ••

... i

* » » ' • ' • '•

- ' " > - . ; • ' . • • •
. . . . : . • ; • . •

• ; 1 J - , 1 » :

• ' . » r - ! ' ; ; . • • . . » ; , - ; .

' • • • "* • ' . .-.
. V - • . • ; V

- . - ' • * • • • ' i -*.

• • • - • • • ; • . > ^ . .

• « « f — • vdi. ^ - • "k J!(— 1 1

1 • '

" * *
• ^

'
. • : . • . . •

• • ' • • ' - ^

. -• " • ; *

JL' s..fi5aji

,
"".".
:v
;. r

c

fs}'\

u
' • ' • ! •

• * r

> mJm *>i -H4.1l l l l r iS > - .

•t

V
I
i
1

V

1
• l

I
i 4

'.'

FTP
OtWFTP

<...J

Fig. 2. Data Management System

Metadata Repository stores various type of information about resources managed
by the system. Data Broker is a distributed entry point to the system. Data Container
is a storage element, which arranges data on various types of media. Proxy provides
an uniform interface to external data sources with a diversified structure. Within the
PROGRESS installation Proxy enables access to biological databanks managed by
SRS (Sequence Retrieval System) [19]. All modules belonging to the DMS middle
ware automatically register themselves in the Metadata Repository.

According to the five-degree maturity levels of autonomic computing (section 2.2),
DMSuite currently comes in the second (managed) level. The first (basic) level of ma
turity is assured by the presence of the Toth Logging System. The Toth is responsible

www.manaraa.com

54 Marvin Wolski, Cezary Mazurek, Pawel Spychafa, Aleksander Sumowski

for gathering all events that occur in the monitored system. It stores the messages in
the internal structures and provides an interface to explore them. But it is not enough
to achieve the second level of maturity, which ensures that systems management tech
nologies can be used to collect details from managed resources, helping to reduce the
time it takes the administrator to collect and synthesize information. Therefore Toth
has been equipped with additional functionality related to the messages processing. It
performs advanced parsing on each of the received events, constructs a set of meta
data on their base, and exposes an interface for searching the collected events, accord
ing to the specified criteria.

Our initial solution aimed to fulfill the basic AC principles is completed by a single
access interface to the whole data components. It allows the end users (professional
staff, administrators, researches) to manage the entire data grid infrastructure as easily
as managing one application running on one computer. This interface has been devel
oped in a form of a Web portal which offers a single and efficient tool to simplify the
management of the distributed components.

The ideas described above have introduced the concept of autonomic computing in
the DMSuite environment. This includes self-configuration, that is automatic registra
tion of distributed components in the Metadata Repository, and self-healing, which
stands for restoring coherency in the distributed file system. But these features consti
tute only a part of the autononriic computing model and are appropriate to achieve the
basic level of AC implementation. On the basis of some scenarios taken from various
perspectives (users, developer, administrators), we will point out which features are
still missing, and describe some extensions to the DMS architecture which will take
advantage of advanced capabilities from the autonomic computing area.

4 Toward the concept of autonomic patterns

In the beginning we would like to recall a few general principles which were fonnu-
lated to design the data grid architectures (following the [6]). These are: mechanism
neutrality, policy neutrality, compatibility with grid infrastructure, and uniformity of
the infoiTOation infi^astructure.

These principles were the underlying reason for the creation of DMSuite. But tak
ing into consideration real case studies taken fi-om various projects using our soft
ware, we noticed a lack of AC capabilities which are necessary to fulfill the enterprise
requirements. These are:

• Self-configuration: self-discovery and self-configuring of the system components.
For example: providing and maintaining the current information about active Data
Brokers and their hierarchy, automatic detection of inactive Data Containers.

• Self-healing: automatic discovery of errors and their corrections. For example:
searching for files with stale properties' and their automatic refreshing, system re
covery after Metadata Repository failure.

In case of internal failure the file properties may become invalid. Dealing with this problem
requires hands-on reaction. This is an internal DMS feature.

www.manaraa.com

The architecture of distributed systems driven by autonomic patterns 55

• Self-optimization: continuous monitoring and control of resource usage, which as
sures their optimal utilization, for example, automatic file replication, file transfer
optimization in terms of speed and bandwidth.

• Self-protection: proactive identification and protection against the attacks. For ex
ample: active detection of incoming threats, response to the specific events in a
form of a system message (mail, log journal etc.).

Owing to the above assumptions, we perceive a necessity to define two additional
guidelines, pointing at directions of the building of novel data grid systems (generally
distributed systems). These are:

• The component model - instead of building a monolith architecture and thus as
signing all resources to a specific application, the software should be treated as a
set of logical, reusable services that can dynamically utiUze (and share) the under
lying hardware resources. These services should be platform-, language-, and oper
ating system-independent;

• Autonomic patterns - system design patterns should lead to building self-
management service architectures, being able to runtime adaptation to the changing
environment conditions. It indicates the presence of the event services, capture and
sharing of state information between sub-systems, integrity and autonomy of self-
management systems. This idea will be revealed further in the next sections.

With regard to the first notion (the component model), in the previous section we
introduced the Data Management System as an example of a distributed system based
on loosely coupled components. The implementation on the second assumption -
autonomic patterns - involves an extension in the present DMS architecture. This
topic will be described more precisely in the next section.

4.1 AC principles implementation

Before we get down to the autonomic computing implementation, we discuss the ini
tial principles that lay down at the basis of the autonomic patterns. We base this list
on the well-known CHOP model (section 2.1):

Self-configuration - distributed components configure themselves without any
human intervention in the form of configuration dialogs or external files. We can as
sume that each element possesses a high-level description of its behavior in a stan
dardized form and the address of the central information repository. This repository
stores all information about the services and resources belonging to the distributed
environment. A new element retrieves the appropriate information that it needs to
function, configures itself on this base and then registers itself in the repository.

The Web Services platform (WSDL, UDDI, WS-Addressing and more) [17] seems
to be the most viable option to implement self-configuration patterns.

Self-healing - we assume that the distributed environment should be capable of
dealing with the failure of any of its components. It is important, however, to distin
guish between the local and the global approach. The former is related to the creation
of a reliable and robust single entity, which involves using the appropriate architec
tural techniques or hardware protection. The latter, which remains our interest, as-

www.manaraa.com

56 Marcin Wolski, Cezary Maziirek, Pawel Spychala, Ahksander Siimowski

sumes the presence of a monitoring element responsible for determining if the distrib
uted components are performing properly, according to their desired behavior. If the
monitoring element detects any inconsistent service, then it reacts, possibly terminat
ing the failure element or updating appropriate records in the information repository.

Self-optimization - similarly to the previous case, we should also distinguish be
tween local and global tuning aspects. It is obvious that each element must utilize the
underlying resources efficiently but it does not assure that the whole environment will
work properly. Therefore we assume that on the global level we will take advantage
of the policy-based management [18]. It involves the presence of an autonomic man
ager which will perform the self-optimize actions according to the desired policy. The
policy should be expressed in an abstract language, for example "On average, users
will not wait more than 5 seconds for the response", and the autonomic element will
translate it into the system commands (or workflow) and execute in the environment.

Self-protection - the self-protection aspects cover two distinct issues: undesirable
system behavior due to bugs or other unexpected conditions and unauthorized access
by attackers. Regarding the former issue, some of the self-healing or self-optimize
patterns are suitable for protection from this type of event. For example, self-
regenerative clusters may be useful when a single node is down because of internal
failure. It is also recommended to take advantage of the intrusion detection system
which is responsible for preventing from any unauthorized access. Similarly to the
other computing systems, the autonomic environment requires strong security control.
It can be realized by defining the security policies which are a part of the self-tuning
policies described in the previous paragraph.

Event service. As a base for our autonomic architecture we will use the central log
repository gathered events from the distributed components. The Toth Logging
System, which is ready to use in various environments and accommodated to
cooperate with different kinds of applications, perfectly fits our needs.

The main fixnctionality, which is storing events coming from many wide-spread
modules, fulfills only one basic assumption - a central message gathering. It does not
treat the statistical analysis of this data. This feature is particularly important in refer
ence to AC patterns when we must distinguish between many types of events which
may occur in tlie distributed system. These can be, for example, situations in which:

• The user waits for data transfer longer than the expected value.
• The user failed to logon into the system.
• The amount of data transferred daily for one user exceeded a given value.

To handle these issues Toth provides a context analysis mechanism of collected
messages. It is based on a set of attributes which are passed in tlie event body in a
form of the key-value pairs. The sequence of operations, comprising the message
processing and drilling for the attributes according to the specified criteria, is realized
on the database level. These criteria may be a type of operation, name of the file, pre
ferred file pr transfer protocol.

In this paragraph we have outlined the general concept of Toth architecture, and
the next sections provide a detailed description of its main components with reference
to the autonomic computing.

www.manaraa.com

The architecture of distributed systems driven by autonomic patterns 57

Predictive level. To achieve level 3 (predictive) of autonomic computation, Toth has
been equipped with two specialized modules. First of all, it is the Knowledge Base
built on the basis of recent activities of managed resources. This part of the
application acts as a foundation of further actions and defines the global environment
state. It is very important to note that this knowledge does not comprise only log
messages from the registered modules, variables values or states and measurements. It
has to be considered as a real knowledge, which is a base set of conclusions that are
drawn from the collected data. To accomplish this assumption we have introduced the
System Diagnostic Monitor - a separate Toth module characterized by the following
features:

• It analyzes the gathered logs, monitors the system components and creates recom
mendations.

• It generates alerts on the basis of several thresholds. It assures proactive monitor
ing, which means reaction to problems before they may appear.

• It runs at regular intervals (autonomic control loop).

On the basis of the CHOP model (section 2.1), we can present a few examples of
system rules which act as a rationale to create recommendations. These are:

• Self-optimization: if a file is accessed frequently, then it can be spread among dif
ferent nodes.

• Self-configuring: if a request passed to distributed component finishes with a net
work error, then it may indicate its failure.

• Self-healing: if a file is locked more than reservation time, then it is probably
stale^.

• Self-protection: if the administrator tried to log in from the machine outside the se
cure zone, then it may indicate an attempt to break in.

The rules are encoded according to XML methodology and apply to the form of
IF(condition) THEN (action). Additionally, we define a set of alerts in the system,
which are triggered when a certain condition (threshold) takes place. It can be, for ex
ample, "low free space" which raises an alarm when the space usage at the Data Con
tainer is higher than 90 percent. By default, the alert notifications will be sent to the
console, but Toth will also support the email or SMS notifications.

The predictive level ensures faster and better decision making providing appropri
ate recommendations for the professional staff members. But the realization of the
autonomic computing vision involves to automate the processes of self-* procedures,
which stands for the adaptive level.

Adaptive level. At level 4 (adaptive), the distributed environment can automatically
take actions based on the available knowledge. The decisions are taken on the basis of
the knowledge base and have to fulfill the assumed policy and defined base rules.

To provide a consistent view of this level of AC, we have to fnstly define a term of
a policy with reference to autonomic computing methodology. The anatomy of the

^ File management within DMS is based on the reservation of physical storage on a specific
amount of time

www.manaraa.com

58 Marcin Wolski, Cezary Maziirek, Pmvel Spychala, Ahksander Siimowski

policy defines the system ability for high-level, broadly scope directives, which are
translated into the specific actions to be taken by the elements. PoUcy-based manage
ment is an active research topic among the scientists. In the autonomic computing ap
proach this refers to the policy-based self-management.

System rules introduced in the previous section actually constitute a basic form of
policy (based on actions IF-THEN). In order to satisfy the requirements of AC level 4
we define a goal policy which describes the conditions to be attained without specify
ing how to achieve this (for example, the time of a file restoration after the failure
must not exceed 60 seconds). This notion is much more flexible than system mles,
because the human or autonomic element can perform specific actions in the moni
tored components without knowing of its inner behavior.

This set of rules and policies allows to define the demanded system characteristics
and it is a base for performing self-* procedures. Actions that are taken during self-
healing or self-tuning operations are performed by individual components. Thus it is
necessary to equip these components in manageability interfaces which provide vari
ous ways to gather details and change the behavior of the managed resources.

The service-oriented architecture defines a number of standard interfaces, but in
order to fulfill the autonomic computing requirements we need to provide the addi
tional interfaces as well. Because our idea concerns the SOA model and grid tech
nologies, we plan to base the final solution on the OGSA [10] architecture. In terms of
the Web Services Description Language (WSDL), OGSA defines interfaces and asso
ciated conventions, mechanisms required for creating and composing sophisticated
distributed systems, including lifetime management, change management, and notifi
cation.

We also define an additional Toth module which will take desired actions on dis
tributed components. This module - the so-called Change Manager - will be respon
sible for two main actions:

• Planning - generating the appropriate change plan according to the assumed policy
and recommendations (made by the system diagnostic monitor). The plan function
can take on many forms, firom a single command to a complex workflow.

• Executing - scheduling and performing the necessary changes to the monitored
system. We must consider that part of the execution of the change plan involves
updating the Toth knowledge base. It is necessary to indicate the actions that were
taken as a result of the analysis and planning and how these actions affected the
managed resources.

Autonomic level. Level 5 (autonomic) is closely defined with the business and
industry demands. It is characterized by a closed loop with the business processes
level, business policies and objectives governing the whole infi-astracture operation.
Users interact with the autonomic technology tools to monitor business processes,
alter the objectives, or both.

At the highest level of autonomic computing we need to extend the meaning of the
goal policy (see the previous section) and provide a way to automatic detennination
of the most valuable goal in any given situation. To achieve this intention we define
the utility policy which makes use of an additional attribute - a value expressing the
relative priority of a policy.

www.manaraa.com

The architecture of distribtited systems driven by autonomic patterns 59

Now it is very complicated to create a system which would be 100 percent compli
ant with the highest AC level. We notice the fact that there is still a need for research
in this area. Our team performed some effort in this direction and as a possible solu
tion we see the combination of the SOA capabilities (service workflow, service bus,
BPEL) and autonomic computing concepts. A detailed presentation of our visions,
however, is beyond the scope of this article (it involves providing a solid background
of the Service Oriented Architecture), so we shall outline only a brief description of
this idea.

Let us suppose that we have an environment built according to the SOA principles.
It means that the services and processes can be decomposed into workflows of activi
ties and tasks that are used to realize them. According to one of the main SOA as
sumptions, these workflows are created, managed and monitored by professional staff
which has specialized tools to perform these operations. Having such an environment,
we can take advantage of the SOA concept and combine it with the AC model. It
means, in short, that the recommendation performed by the system diagnostic monitor
can be translated into the SOA-specific workflow in order to perform the desired ac
tivity in the system. This workflow may be automatically deployed on a specialized
runtime engine and executed. Thanks to the existing tools designed to manage the
SOA, professional staff have a possibility to analyze, check, redefine or monitor these
autonomic activities.

5 Conclusions

In this paper we have described an approach to creating a distributed environment
composed of loosely coupled components and capable of performing self-managing
actions. This solution may constitute an example of a novel application (data grid sys
tem), which faces the problem of increasingly complex systems.

We have provided a step-by-step solution describing how to achieve the desired
goal. We have started from the basic level of autonomic computing implementation
and fmished with the most advanced issues, referring to the business processes level
and business policies. The DMSuite platform served us as a reference base for im
plementing autonomic patterns. As it was mentioned, the current release of this soft
ware supports the basic level of the AC model. But we are currently working on the
extensions which were described in this article, and will implement a part of advanced
autonomic computing technology. It will include the proactive reactions to some well-
defined situations, detections of any "unusual" events, generating recommendations
for administrators and many more.

There is still much to be done within the scope of the self-aware environments.
This is not only because of the scale of distributed applications and systems, but also
because QoS (Quality of Service) support needs to be specific to the requirements of
individual end-users. In our opinion, in the near future much of research work will
pursue the fiill vision of autonomic computing systems, and this will rely on aggre
gated grid resources and autonomic computing software platforms. This may be a
crucial step to pass from the academic to the enterprise environment.

www.manaraa.com

60 Marvin Wolski, Cezary Mazurek, Pawel Spychala, Aleksander Sumowski

References

1. Rychlewski, J., Weglarz, J., Starzak, S., Stroinski, M., Nakonieczny, M.: PIONIER; Polish
Optical Internet. Proceedings of ISThmus 2000 Research and Development for the Informa
tion Society conference. Poznan Poland (2000) 19-28

2. Bogdanski M., Kosiedowski M., Mazurek C, Stroinski M.: Facilitating the process of ena
bling apphcations within grid portals. Grid and Cooperative Computing (GCC 2004) ed Ji-
anhua Sun et all Proceedings of Third International Conference, Wuhan, Chiny, October
2004, Springer, Lecture Notes in Computer Science, 3251, pp.l75-i82

3. Kosiedowski, M., Malecki, M., Mazurek, C, Spychala, P., Wolski, M.: Integration of the
Biological Databases into Grid-Portal Environments, Workshop on Database Issues in
Bioological Databases DBiBD. Edinburgh UK (2005)

4. Grzybowski P., Mazurek C, Spychala P., Wolski M.: Data Management System for grid
and portal services. Submitted to Grid Computing: Infrastructure and Applications special
issue of The International Journal of High Performance Computing Applications (IJHPCA),
Cardiff University, UK, http.V/progress.psnc.pl/English/DMS.pdf

5. Journal of Computational Methods For Science and Technology no. 12 vol. 1 - Grid Appli
cations - New Challenges For Computational Methods

6. Chervenak, A., Foster, I., Kesselman, C, Salisbury, C. and Tuecke, S.: The Data Grid: To
wards an Architecture for the Distributed Management and Analysis of Large Scientific
Data Sets. J. Network and Computer Applications, 2000

7. Kephart J.O, Chess D.M., "The Vision of Autonomic Computing," Computer, vol. 36, no.
1,2003, pp. 41-50

8. Steve R. White, James E. Hanson, Ian Whalley, David M. Chess, Jeffrey O. Kephart,: An
Architectural Approach to Autonomic Computing", International Conference on Autonomic
Computing (ICAC'04), May 17-18, 2004.

9. Foster, I., Kesselman C, Tuecke S.: The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. International Journal of High Perfoimance Computing Applications, 2001.
15(3): p. 200-222

10. Foster I., Kesselman C, Nick J.M., Tuecke S: The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration," a research paper, Globus Pro
ject; http://www.globus.org/alliance/publications/papers/ogsa.pdf

11. An architectural blueprint for autonomic computing, a white paper, IBM corporation,
http://www-03.ibm.com/autonomic/pdfs/ACBP2_2004-10-04.pdf, June 2005, third edition

12. Automating problem determination: A first step toward self-healing computing systems", a
white paper, IBM corporation, http://www-03.ibm.com/autonomic/pdfs/Problem_Determi-
nation_WP_Final_100703.pdf, October 2003

13.Erl, T.: Service-Oriented Architecture: A Field Guide to Integrating XML and Web Ser
vices, Prentice Hall, Upper Saddle River, NJ, USA (2004)

14. Ganak A. G., Corbi A. T.: The dawning of the autonomic computing era. IBM Systems
Journal, 42(1):5-18, 2003

15. JMS, the Java Message Service, http://java.sun.com/products/jms/index.jsp
16. Data Management System Portal, http://dms.progress.psnc.pl
17. Weerawarana S., Curbera F., Leymann F., Storey T., Ferguson D. F.: Web Services Plat

form Architecture : SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable
Messaging, and More, Prentice Hall, Upper Saddle River, NJ, USA (2005)

IS.Sloman M.: Policy Driven Management for Distributed Systems, Journal of Network and
Systems Management, Vol.2 (1994)

19. SRS, the Sequence Retrieval System, http://www.biowisdom.com/solutions_srs.htm

www.manaraa.com

An optimizing OCL Compiler for Metamodeling and
Model Transformation Environments

Gergely Mezei, Tihamer Levendovszky, Hassan Charaf

Budapest University of Teciinology and Economics
Goldmann Gyorgy ter 3., 1111 Budapest, Hungary

Abstract. Constraint specification and validation lie at tlie heart of modeling and
model transformation. The Object Constraint Language (OCL) is a wide-spread
formalism to express constraints in modeling environments. There are several
interpreters and compilers that handle OCL constraints in modeling, but these tools
do not support constraint optimization, therefore, the model validation can be slow.
This paper presents algorithms to optimize OCL compilers to reduce the
number of database queries during the validation process by eliminating the
unnecessary traversing steps and caching the database queries. Proofs are also
given to show that the optimized and the unoptimized code are functionally
equivalent. The optimized compiler has been integrated into the Visual Modeling
and Transformation System tool and applied to constraints appearing in both
metamodels and graph rewriting-based model transformation rules.

1 Introduction

The information conveyed by a model created by a traditionally generic modeling
language has a tendency to be imprecise [1]. For example, if a UML Class diagram [2]
expresses a relation of type association between vehicles and the passengers traveling in
the vehicle, the multiplicity between the two classes is 0..*, representing that several
passengers can travel on a single vehicle. This multiplicity expresses that there is no
upper limit to the number of passengers in general, because the limit depends on the
type of the vehicle. Without additional techniques it is not possible to define that
the maximum number of passengers equals the number of seats plus the number of
standing rooms on the vehicle. Even if the generic modeling languages are extended
with constraint handling, they cannot always describe the special attributes of the target
domains. Thus, customizable models, modeling techniques, and model transformation
algorithms are required by model-based software development. Domain Specific
Modeling Languages (DSMLs) are a means to create customized models for domains
where generic modeling languages would fail. Metamodeling is a proven solution for
modeling DSMLs. The metamodel acts as a set of rules for the model level: it defines
the available model elements, its attributes, and the possible connections between
them, Metamodel definitions can usually define simple, topology-based rules, but they
cannot express constraints for attribute values or other sophisticated requirements.
Thus, sometimes the metamodeling rules are also incomplete. For example, if there is a
resource editor domain for mobile phones, it is useful to define the valid range for
slider controls. Specifying constraints in both generic and domain-specific models is

Please use the following formatwhen citing this chapter:

Mezei, G., Levendovszky, T., Charaf, H., 2006, in IFIP International Federation for Infonnation Processing, Volume 227,

Software Engineering Techniques; Design for Quality, ed. K. Sacha, (Boston: Springer), pp. 61-71.

www.manaraa.com

62 Gergely Mezei, Tihamer Levendovszky, Hassan Charaf

crucial to create precise and verifiable models. Constraint definitions are not only useiiil
in modeling, but in model transformations as well. To define the transformation steps,
beyond the topology of the visual models, additional constraints must be specified,
which ensures, for example, value checking of the attributes. Dealing with constraints
means a solution to several unsolved model transformation issue [3]. For example
if the model transformation executes a search algorithm for non-abstract classes in
a class diagram, then it is useful to express this condition. Constraint-based model
transformation is very popular, it is used for example in QVT [4].

One of the most wide-spread approaches to constraint handling is the Object
Constraint Language (OCL) [1]. OCL is a flexible, user-friendly yet formal language.
Although it was created to extend the capabilities of UML [2], it can also be used
in metamodeling environments to validate the models, or to define constraints in
metamodel-based model transformations.

Visual Modeling and Transformation Systems (VMTS) [5] is an n-layer metamodeling
and model transformation tool. VMTS uses OCL constraints in both model validation
and in the graph rewriting-based model transformation [3]. VMTS contains an OCL 2.0
compliant constraint compiler to generate code for constraint vahdation. The constraints
contained by both the rewriting rules and metamodel diagrams are attached to the
metamodel, thus they can be handled with the same algorithms.

The primary aim of this paper is to give an overview on the optimizing algorithms
used in the OCL compiler of VMTS. Previous work [6] has presented two efficient
algorithms to reduce the navigation steps in the constraints by relocating the constraints
and separating clauses based on Boolean operands. These algorithms are introduced in
short, and they are extended with a third algorithm that can accelerate the database
queries by an efficient caching technique. The paper also gives a concise description in
which compilation step the optimization algorithms can be used and how the three
algorithms can cooperate. Novel, detailed proofs are also discussed that the optimized
and the unoptimized code are functionally equivalent.

The main advantage of the presented algorithms is that they do not rely on
system-specific features, thus they can be easily implemented in any other modehng or
model transformation framework. The algorithms do not require a specific implementation
language, or database to store the models. The presented approach does not even need
an environment based on a DBMS, it can be apphed to all model repositories, such as
MOF 1.4 repositories.

The paper is organized as follows: firstly. Section 2 elaborates some of the popular
tools that support constraint checking. Section 3 introduces the previous work in short,
while Section 4 presents the new results. Finally, Section 5 summarizes the presented
work.

2 Related work

There are several modehng frameworks and extension tools for frameworks that support
OCL constraints in a more or less efficient way. This section deals with the most
typical compilers only.

www.manaraa.com

An optimizing OCL Compiler for Metamodeling and Model Transformation Environments 63

Object Constraint Language Environment (OCLE) [7] is a UML CASE Tool, OCLB
helps the users to realize both static and dynamic checking at the user model level.
The tool also has a user-friendly graphical GUI. Although the tool supports model
checking, it does not use compiling techniques.

The Dresden OCL Toolkit (DOT) [8] [9] generates Java code from OCL expressions,
and then instruments the system in five steps, (i) OCL expressions are parsed using a
LALR(l) parser generated with SableCC [10]. The result of the step is an Abstract
Syntax Tree (AST), (ii) A limited semantic analysis is performed on the AST to find
errors, (iii) The AST is simplified in order to make the further processing simpler, (iv)
The code generator traverses the simplified AST and builds Java expressions, (v) The
generated code is inserted into the system that contains the constraint source code,
thus, the contracts can be tested at runtime. DOT does not support metamodeling, or
optimized constraint-checking,

Kent Modeling Framework [11] is a set of tools that supports model driven software
development. One of these tools is KMFStudio a tool to generate modeling tools from
metamodels. KMFStudio supports dynamic evaluation of OCL constraints. It enables
the language to be bridged to other modeling frameworks. The tool was integrated into
the Echpse tool set. The Kent Modeling Framework does not use optimizing algorithms
to improve the efficiency of the constraint validation.

Open Source Library for OCL (OSLO) [12] is a new tool and it is a further
development of Kent OCL Library. OSLO is based on the Eclipse framework. OSLO
supports OCL 2.0 functions for arbitrary metamodels based on EMF, and constraint
checking for UML2 models (Eclipse UML2). OSLO supports therefore constraint
checking for metamodeling system, but it cannot cooperate with model transformation
systems. Since it is a recent project, only a few publications are available, and not all
of the supported features are introduced in depth.

3 Backgrounds

3.1 VMTS OCL 2.0 Compiler

The OCL Compiler realized in VMTS consists of several parts (Fig. 1), This section
gives a short description of the architecture of the compiler, more detailed information
on the compiler can be found in [13] and [3],

Constraint in OCL
(OCL)

Binary validation
checker

(executable)

Lexical and
Syntactic Analysis

: >

BuUd

< :

Syntax tree

Sopurce Code
(C#)

Semantic
Analysis

Code Dom

>
Semantic Analysed

Syntax tree

TVee Construction

V

CodcDom Tree

Fig. 1. VMTS OCL Compiler 2.0 Architecture

www.manaraa.com

64 Gergely Mezei, Tihamer Levendovszky, Hassan Charaf

The user defines the constraints in OCL, then the constraint definitions are tokenized
and syntactically analyzed. The lexical analysis reads the constraint definition as a
text, and creates a sequence of token, such as the keywords of the language. Syntactic
analysis builds a syntax tree using the grammar rules of OCL specified in EBNF
format [I]. To accommodate the ambiguities in the specification, the grammai" rules
are simplified. The information missing because of the simplification is reconstructed
in the later compilation steps, where the analysis has more infomiation (e.g. about
available types and defined variables). Since the syntax tree does not contain all the
necessary information, it should be extended e.g. with type information, and implicit
self references. This amendment is performed in the semantic analysis phase, and
it produces a semantically analyzed syntax tree. The semantic analysis also reconstructs
the mentioned simplification made in the grammar. In the next step, the constructed
and semantically analyzed tree is transformed to a CodeDOM tree. CodeDOM [14]
is a .NET-based technology that describes programs using abstract trees, and it can
use this tree representation to generate code to any languages that is supported by
the .NET CLR (like C#, or Visual Basic). The compiler transforms the CodeDOM
tree to C# source code. To support the base types available in OCL, a class library
has been developed. The constraint classes inherit from the base classes implemented
in this class library. The output of the OCL compiler is a binary assembly (a .dll
file) that implements the validation method.

Since the constraints are compiled only once, not each time when the constraints
are evaluated, the vahdation process is fast and efficient. The compiled OCL validation
assembly can be used either in model validation, or in graph transformation. There are
no differences between the two cases in handling the constraints: the editing framework
(VMTS Presentation Framework) collects the appropriate model items and invokes the
validation method for them.

The evaluation of the OCL constraint consists of two parts: (i) Selecting the object
and its properties that we need to check against the constraint, and (ii) executing the
validation method. Although the execution of the validation method can use several
optimization methods, in this paper the presented algorithms focus on the first step.
There are two reasons for this: (i) Since the efficiency of the validation depends on
the realization of the OCL types and expressions, optimizing the validation process
is usually more implementation-specific, (ii) In general, the first step has more serious
computational complexity, because the model items are matched in the underlying
model. If the model is stored in a DBMS, then each navigation step means a database
query.

3.2 Normalization

If the constraint does not contain any unnecessary navigation steps, then it is in
Canonical Constraint Form, or simply it is normalized. The normalization, namely
reducing the navigation steps can accelerate constraint evaluation. The aim of the first
introduced optimization algorithm, called RELOCATECONSTRAINT is to provide a
method to normaUze the OCL constraints if it is possible. The algorithm is shown in
Fig. 2. The algorithm processes the OCL constraints propagated to the transformation

www.manaraa.com

An optimizing OCL Compiler for Metamodeling and Model Transformation Environments 65

Step. The main preach loop examines the navigation paths of the actual constraint and
relocates the constraint to the node with the smallest navigation cost.

RELOCATECONSTRAINT (Model M)
foreach InvariatConstraint C in M

minNwnberOfSteps = CALCULATESTEPS (CurrentNode in C)
optimalNode = CurrentNode of the C
foreach Node N in C

numberOjSteps = CALCULATESTEPS(N)
it(numberOJSteps < tninNumberOfSteps) then

minNumberOfSteps = numberOnSteps
optimalNode = N

endif
end foreach
it{optimalNode != CurrentNode of the C) then

UPDATENAVIGATIONS of the C
RELOCATE C to optimalNode

endif
end foreach

Fig. 2. The Relocate Constraint algorithm

Using constraint relocation, the RELOCATECONSTRAINT algorithm eliminates
all unnecessary navigation steps to produce non-decomposable (atomic) expressions.
The proof of this statement, and the algorithm in more detail is discussed in [6],

3.3 Invariant decomposition

The goal of the constraint normalization is to achieve the pure canonical form, which
does not contain navigation steps. Using the RELOCATECONSTRAINT algorithm, it
is not possible in all cases, because constraints are often built from sub-terms and
linked with operators (self.age = 18 and self.name =' Jay'), or require property
values from different nodes (self .age = self .teacher.age).

Although subterms are not decomposable in general, they can be partitioned to
clauses if they are linked with Boolean operators. A clause can contain two expressions
(OCL expression, or other clauses) and one operation (AND/OR/XOR/ IMPLIES)
between them. Separating the clauses, we can reduce the number of the navigation steps
contained by the OCL expressions and the complexity of the constraint evaluation during
the constraint validation process. It is simpler to evaluate the logical operations between
the members of a clause than to traverse the navigation paths contained by the constraints.

The ANALYZECLAUSES algorithm (Fig. 3) is invoked for the outermost OCL
expression of each invariant. The algorithm recursively searches the constraint for
possible clause expressions and creates the clauses.

Applying the ANALYZECLAUSES algorithm, the number of the navigation steps
in the constraints contained by the output model is minimal (supposing that only the
logical relations can be decomposed) [6].

www.manaraa.com

66 Gergely Mezei, Tihamer Levendovszky, Hassan Charaf

ANALYZECLAUSES (Expression Exp)
if (Exp is LogicalRelationExpression) then

Clause=CreateClause(Exp.Relatioii'iype);
Clause.ADDEXPRESSION(ANALYZECLAUSES(Exp.Operandl)),
Clause.ADDEXPRESSION(ANALYZECLAUSES(Exp.Operand2));
return Clause;

else
if (Exp is ExpressionlnParantheses) tlien

return ANALYZECLAUSES (Exp.InnerExpression);
else

if(Exp is OnlyExpressionlnConstraint) then
Clause=CreateClause(SpecialClause);
Clause.ADDEXPRESSION(RELOCATECONSTRAINT(Exp));
return Clause;

else
return RELOCATECONSTRAINT(Exp);

endif
endif

endif

Fig. 3. The Analyze Constraint algorithm

4 Contribution

4.1 Caching algorithm

Since the relocation and constraint decomposition algorithms can eliminate the
unnecessary navigation steps only, the compiler cannot reach the pure canonical form
in all cases. The clauses can also contain navigation steps, the validation still requires
queries to obtain the model elements, and their attributes.

In compiler optimization, an occurrence of the expression E is called a common
subexpression if the value of E has previously been computed, and it has not changed
since then [15]. In these cases recomputing this expression can be avoided, because the
value of the expression is already known.

Proposition 1. In OCL constraints navigation steps and attribute references are always
common subexpressions if they are used more than once .

Proof OCL specification defines the constraints as restrictions on one or more values,
but these restrictions cannot have any side-eifects. This means that the model cannot
change during the validation, thus the computed values can be reused.

The presented idea is the basis of the third optimization algorithm. On one side,
caching the model items can eliminate the redundant database queries in the constraint
expressions. On the other side, the more attribute or navigation is cached, the more
memory the cache requires. Thus, only those expressions are cached that are referenced
more than once. Therefore the optimization algorithm (the REFERENCECACHING
algorithm) has two main steps: (i) getting statistical information about the model
references (GETCOMMONREFERENCES algorithm), and (ii) caching the evaluation
expressions (CACHINGMANAGEMENT algorithm).

www.manaraa.com

An optimizing OCL Compiler for Metamodeling and Model Transformation Environments 67

Collecting the statistical information set from the whole constraint expression is not
straightforward, because sometimes only partial validation is required on a model.
Thus, the caching algorithms are used at the context level, the statistical information of
the different contexts are separated.

The GETCOMMONREFERENCES algorithm is shown in Fig. 4. The algorithm
uses a breadth-first search to traverse the syntax tree recursively. It processes the
attributes, the navigations, and the control flow expressions. The attributes and
navigation expressions increment the statistic of their path reference (IncReferencePath
method). To minimize the number of queries, the algorithm increments not only
the reference of the full path, but also the references of the path steps. For example
the expression self.employee.wife.Name will increase the statistics with four
entries: self, self .employee, self .employ ee.wif e and self.employee.wife.Name.
The statistics contains even the self element, because it is not cached always, if there is
only one reference to it. This solution is useful if two expression have a common subset
in the navigation steps, for example, in the expression self.employee.wife.Nam,e =
'Mrs.' + self.em,ployee.Name, the path self.employee is used twice.

GET COMMON REFERENCES (CurrentNode)
s-witch{CurrentNode.Type)

case AttributeDefinition:
it(CurrentMode.HasOneChM) then

IncReferencePath(5e//ErpreM!on, null)
else

lncRs{ersncePath(Attribute,
GETCOMMONREFERENCESCCwrrentiVoc/e.ChUdren))

endlf
return

case NavigationStep:
IncReferencePath(Mo(ie//teOT,

GETCOMMONREFERENCES(CMrre««iVo&.Children))
return

case ControlFlowExpression:
GetMinimumReferencesForEveryExecutionPathO
UpdateCurrentGlobalReferencesO
return

endswitch
if(CMrre«fiVorfe.HasChildren) then

GETCOMMONRENCES(CMrreH/Wo£/e.Children)
endif

Fig. 4. The Get Common References algorithm

The control flow expressions are complex expressions that have several execution
paths, thus, they can affect the number of the references, for example conditional
expression, or loops. In this case the algorithm should obtain the minimum number of
the references for each referenced objects for each execution paths. For example in case
of the conditional expressions this means that both branches are processed, statistical
information is collected for both branches, and then the results are compared. For each

www.manaraa.com

68 Gergely Mezei, Tihamer Levendovszky, Hassan Charqf

model reference path (attribute, or navigation reference), the minimum number is
obtained and placed into the global statistical information set.

As the result of GETCOMMONREFERENCES algorithm, the compiler has reliable
statistical information. CACHINGMANAGEMENT algorithm uses this information to
handle caching. CACHINGMANAGEMENT algorithm differs from the previously pre
sented algorithms, because it affects the generated source code directly instead of the
syntax tree. Each time the compiler generates a navigation step or an attribute query,
the statistics are checked, and a cache (a local variable) is created if required. This
variable obtains the appropriate value from the database if it has not been read before,
or returns the value from the cache if it is not the first reference. If the model reference
is not cached, the code generator will create a conventional source code for it.

Proposition 2. Using the REFERENCECACHING algorithm to evaluate the constraint
the number of the applied queries is equal or less than that without optimization.

Proof. The GETCOMMONREFERENCES references algorithm is applied in
design-time, it does not raise the number of the queries during the evaluation. The
CACHINGMANAGEMENT algorithm handles two types of model references: the
cached, and the uncached references. The source code and thus, the number of database
queries of uncached model references is the same as in the unoptimized code. The
cached references execute the appropriate database query only if the required value is
not in the cache, i.e. it has not been not read before. Therefore, neither the uncached
nor cached references increase the number of the database queries.

Proposition 3. Each attribute or navigation cached by the algorithm reduce the number
of the database queries, namely no unnecessary caching is applied.

Proof The GETCOMMONREFERENCES algorithm is executed for each referenced
context. If the context contains an expression that has several possible execution paths,
then every path is examined, and for every model attribute and navigation the smallest
number of references is stored. The sequential execution paths are examined step-by step,
and the statistics is increased if required. As result the statistics contains the minimum
number of the references in the context for every model item (attribute, or navigation).
The CACHINGMANAGEMENT algorithm creates caching code only for the model
references that have greater statistical index, than one. Since the statistics contains the
minimum number of the references of the current item, thus, no unnecessary caching is
performed.

4.2 An optimizing OCL compiler

In order to create the optimizing OCL compiler, the presented algorithms (i) have to be
placed in the compiler control flow, (ii) a proper order of execution should be set, and
(iii) proofs should show that the results of the optimized and unoptimized compiler are
always the same.

The optimization algorithms require a semantically analyzed syntax tree, since, for
example, the caching algorithms would not work without proper type-information.

www.manaraa.com

An optimizing OCL Compiler for Metamodeling and Model Transformation Environments 69

Thus, the optimization algorithms are used after the semantic analysis. The constraint
decomposition, relocation, and the statistical information retrieval algorithms are
executed before the code generation phase, because they affect the syntax tree from
which the code is generated. The CACHINGMANAGEMENT algorithm affects the
code generation directly, it is used during the generation phase.

The next step is to set the order of execution of the optimization algorithms. Since the
CACHINGMANAGEMENT algorithm is used in code generation compilation step it is
executed as the last of the optimization algorithms. The constraint relocation algorithm is
optimal only in case of non-decomposable constraints, hence the constraint decomposition
should be processed firstly, and then the relocation, and obviously, the processing order
cannot be changed [6]. The GETCOMMONREFERENCES algorithm uses the syntax
tree only, thus, it can be used both for processing clauses and normal constraints. At the
same time the caching algorithm handles the contexts separated from each other. Since
the constraint decomposition can change the contexts, for example it can divide them
into several clauses, the GETCOMMONREFERENCES algorithm should be used after
the decomposition. The relocation algorithm can also affect the context definitions by
relocating the expressions into other contexts, thus, the execution order of the optimization
algorithms is the following: (1) ANALYZECLAUSES, (2) RELOCATECONSTRAINT,
(3) GETCOMMONREFERENCES, (4) CACHINGMANAGEMENT

The last step to create the optimizing compiler is to prove that the optimization
does not change the result of the vahdation.

Proposition 4. Applying the optimization algorithms for an optional input model does
not modify the result of the constraint evaluation.

Proof Let H be an optional input model, and let H' be the result model of the op
timization executed by the ANALYZECLAUSES, RELOCATECONSTRAINT and
REFERENCECACHING (GETCOMMONREFERENCES and CACHINGMANAGE
MENT) algorithms. We prove that evaluating the constraints contained by H' produces
always the evaluation in H.

Suppose that a constraint processed by the algorithm conflicts with the original
constraint definition, because the cached references created and used by the REFER
ENCECACHING algorithm are not up-to-date. This contradicts Proposition 1.

In the RELOCATECONSTRAINT algorithm UpdateNavigation, and the Relocate
function calls can modify the result, because other steps examine the existing constraints
only. UpdateNavigation step replaces the existing context references with the new ones.
The function Relocate does not modify the constraint but relocates it to a new model item.
The functions together do not affect the result of the constraint according their definition.

The algorithm ANALYZECLAUSES can be divided into three main cases: (i) the
examined expression is a complex (non-atomic) expression with Boolean operators; (ii)
the examined expression is an expression between parentheses; (iii) or the expression is
an atomic expression. The simplest case to examine is (ii), where the inner expression
(the expression between the parentheses) is recursively processed. The evaluation order
of the subexpressions is the same as that of the original expression, and since no further
modification is made, therefore case (ii) does not affect the result of the constraints.
Case (iii) has two subcases. If the examined expression is the only expression in the

www.manaraa.com

70 Gergely Mezei, Tihamer Levendovszky, Hassan Charaf

constraint, then a special clause is created, and the relocated constraint is placed into it.
The special clause type is required only because of the uniformity. The inner expression
(the normalized constraint) is processed when it is validated as if it were not contained
in any clauses. The second subcase applies when the examined expression is a part of
the constraint. In this case the relocated expression is returned. In both subcases the
result of the constraint is not modified. Case (i) is used only if the constraint consists
of two subparts linked with Boolean operators. A clause is created that preserves the
Boolean operator, and the subexpressions are recursively processed. The subexpression
is processed individually when vaUdating the constraint, and their results are cormected
using the operator (the order of the subexpressions are the same as in the original
constraint). Therefore the result of the validation is modified only if the subexpressions
cannot be processed independently. The independency is not true only if the first
subexpression has an effect on the second subexpression, this means that the first
expression modifies one or more value used in the second expression. These modified
values can be either model attributes, or variables defined in the current scope. The
constraints used in validation cannot modify the model according to the specification of
OCL [1]. Local variables can be defined for example in Iterate, and Let expressions, but
using any variable definition expression would mean that the outermost expression cannot
be an expression linked with Boolean expressions. This means that the subexpressions
of the clauses are independent, thus the result of the vahdation cannot be modified.

To sunmaarize, the algorithms - if they are executed separately - relocate the
constraint without changing its meaning, thus, the only way in which H' and H can
have different results is that the algorithms affect each other, and thus their composition
changes the meaning of the constraint. The algorithm REI^ERENCECACHING is
executed independently from the other algorithms, and the proven correct output of the
ANALYZECLAUSES is the input of the RELOCATECONSTRAINT algorithm. Thus,
the result created by the composition of the algorithms is always correct.

5 Conclusions

This paper has presented the main concepts of an optimizing OCL Compiler in an n-layer
metamodeling and model transformation system. The primary aim of the optimization
was to reduce the number of database queries by normahzing and caching the constraints.
Constraint relocating, constraint decomposition and caching techniques have been
proposed. The correctness and the efficiency of the algorithms have been proven.

Optimizing OCL constraints is a rather new idea; none of the existing tools
supports constraint optimization. This means that these tools can only use external
optimization algorithms offered by the underlying applications, such as the query
optimization in the underlying database system, or the code optimization of the
executing environment. Although these external optimization algorithms are optimal
in general, they (i) require system-specific (tool-specific) solutions and (ii) cannot
use particular OCL-specific algorithms. For example, the executing environment that
executes the validation code cannot recognize automatically that attributes are always
common subexpressions. In contrast, the presented optimizing OCL compiler can
use OCL-specific, but implementation- independent optimization algorithms. These

www.manaraa.com

An optimizing OCL Compiler for Metamodeling and Model Transformation Environments 71

algorithms can be based on the characteristics of the OCL, which means a higher level
of optimization. Furthermore optimizing compilers can also take the advantages of the
underlying tools. We have accompUshed several simplified performance tests, and we
have found that the optimization can speed up the validation by 10-15% according to
the circumstances. Since only basic tests were applied, further testing is required to
give a detailed overview about the efficiency of the algorithms against the optimization
supported by the external tools.

Although three efficient optimization algorithms have been presented, processing
the OCL constraints is not optimal. The decomposition and the normalization of the
atomic expressions have reduced the navigation steps to the minimum, and the caching
algorithm has reduced the number of queries, but further research is required to extend
the scope of the optimization algorithms and accelerate the process. The validation
process can be optimized by rewriting the constraint and avoiding time consuming
expressions, such as Alllnstances.

6 Acknowledgements

The found of "Mobile Innovation Centre" has supported, in part, the activities described
in this paper.

References

L Jos Warmer, Anneke Kleppe, Object Constraint Language, The: Getting Your Models Ready
for MDA, Second Edition, Addison Wesley, 2003

2. UML 2.0 Specification homepage, http://www.omg.org/uml/
3. Laszlo Lengyel, Tlhamer Levendovszky, Hassan Charaf, Compiling and Validating OCL

Constraints in Metamodeling Environments and Visual Model Compilers, lASTED 2004,
Innsbruck

4. MOP QVT Specification, http;//www.omg.org/docs/ptc/05-ll-01.pdf
5. VMTS Web Site, http://avalon.aut.bme,hu/~tihamer/research/vmts
6. G. Mezei, L. Lengyel, T. Levendovszky, H. Charaf, Minimizing the Traversing Steps in

the Code Generated by OCL 2.0 Compilers, Issue 4, Volume 3, February 2006, ISSN
1109-0832, pp. 818-824.

7. Object Constraint Language Environment, http://lci.cs.ubbcluj.ro/ocle/
8. All Hamie, John Howse, Stuart Kent, Interpreting the Object Constraint Language, Proceedings

5th Asia Pacific Software Engineering Conference (APSEC '98), December 2-4, 1998,
Taipei, Taiwan, 1998

9. Dresden OCL Toolkit, http://dresden-ocl.sourceforge.nef'index.html
10. SableCC, http://sablecc.org/
11. David Akehurst, Peter Linington, and Octavian Patrascoiu, OCL 2.0: Implementing the

Standard, Technical report. Computer Laboratory, University of Kent, November 2003.
12. Open Source Library for OCL,http://oslo-project.berlios.de/
13. Gergely Mezei, Tihamer Levendovszky, Hassan Charaf, Implementing an OCL 2.0 Compiler

for MetamodeUng Environments, 4th Slovakian-Hungarian Joint Symposium on Applied
Machine Intelligence

14. Thuan, T.,Hoang, L.: .NET Framework Essential", O'Reilly,2003.
15. Alfred V. Aho, Ravi Sethi, Jeffrey D. UUman, Compilers Principles, Techniques, and Tools,

Addison - Wesley, 1988

www.manaraa.com

Crossing the Borderline -
From Formal to Semi-Formal Specifications

Andreas Bollin

Institute for Informatics-Systems
University of Klagenfurt, Austria

Andreas.Bollin@uni-klu.ac.at

Abstract. Being part of the systems' documentation state-based formal specifica
tions can play a crucial role in the software development process. Hovv'ever, besides
dense mathematical expressions, their semantical compactness and lack in visually
appealing notations impede their use and comprehensibility among different stake
holders. One solution to this problem is to enrich the specification by a semi-formal
view, in most cases diagrams with a sufficiently understood semantic meaning.
However, as control- and data-dependencies within declarative specifications are
hard to detect, existing approaches only cover statics-bearing diagrams. As a way
out this paper presents an approach for control- and data dependency analysis
within declai-ative formal specifications. Based on these dependencies, UML
diagrams showing static and dynamic properties of the specification arc generated.

1 Introduction

Formal software specifications are usually recommended as means to produce
iiigh-quality software. They can solve the verification problem ("do the system right").
But, even if the system has been refined correctly, there is another problem to be
solved: the validation problem ("do the right system").

What sounds like a requirements elicitation problem also has to do with the
problem of choosing a suitable notation. The risky part is that the stakeholders of
the project (developers, customers, authorities) have to agree upon the meaning of
the formal specification. Here, unclear requirements and specifications lead to futile
vaUdations easily. And this, in consequence, leads to a "buggy" system. So, the problem
is not the formal notation, as its semantics is well-defined. The problem is the likely
misinterpretation of concepts - due to the difl'erent habits of the stakeholders.

So why not just combining formal specifications and wide-spread semi-formal
approaches? Such a combination would have several advantages. Different views (either
of graphical or textual/mathematical nature) convey the concepts much better between
different stakeholders. The approaches are not meant to replace each other, but they
extend the possibilities of concept description: properties of semi-formal descriptions
get deducible (by stepping into the formal world) and formal specifications can be
described at an even more abstract level.

Several research teams are working on the issue of mapping graphical approaches
(e.g. UML) to formal specification languages. The generated specification is then

Please use the foUowing format when citing this chapter:

Bollin, A., 2006, in IFIP International Federation for Information Processing, Volume 227, Software Engineering Tech
niques: Design for Quality, ed K. Sacha, (Boston: Springer), pp. 73-84.

www.manaraa.com

74 Andreas Bollin

used for consistency checking and test-data generation [1,2]. Moving the other way
round still has its limitations [3]. The reasons are the superficial analysis of state-based
specification and missing flow of control. As a result only static class diagrams (that
represent state variables of the specification) are generated so far.

With the reconstruction of control- and data- dependencies (via specification
transformations [4]) much more gets possible; slices and chunks allow to excerpt pieces
of the specification text with well-defined semantics, and cluster generation allows for
carving out higher level specification concepts [5]. Finally, and as demonstrated in
this contribution, by making use of control dependencies it gets feasible to visualize
dynamic behavior of specifications the first time.

The contribution is structured as follows. Section 2 explains the need for bridging
the gaps in more detail and presents the state-of-the-art of transforming UML diagrams
to formal specifications and vice-versa. It gives special attention to some limitations of
existing approaches: the scaling problem, and missing dynamics. Section 3 discusses
ways to identify relevant elements within Z specifications [6] which will then be the basis
for control- and data-dependency reconstruction. Section 4 then presents rules for the
transformation (based on these dependencies). It explains the approach by making use
of a small Z specification. The paper concludes with a short summary and an outlook.

2 Bridging the Gap

It would be the dream of every maintenance personnel, but neither does a SW-system,
in general, adapt itself to changing situations or domains (retaining or even improving
its quality), nor is it just straight-forward to produce new software products of high
quality. As Glass [7, p. 122] points out, comprehending the requirements and vaUd (and
consistent) documentation is essential, but rarely all documents are available or are of
suitable quality. This is one of the main problems during software comprehension', A
situation that should be improved whenever possible.

2.1 Comprehension Challenges

There are several models describing how to maintain software systems [8,9], but all of
them stress that it is necessary to first comprehend the requirements and the relevant parts
of the underlying system. Starting from scratch and stepping through the code is very
time-consuming. Banker et. al. point out the fact that the time needed to comprehend a
system on the basis of software code alone is about 3.5 times longer than comprehending
the system by additionally studying its documentation [10]. Thus making use of design
documents and specifications helps in saving time. But where are the problems?

Well, formal specifications are closer to the requirements - but comprehension
needs special skills, and so stakeholders seem to shy away from them. The problems
are manifold and are the result of the following gaps between the two worlds:

PI Formal specifications are said to be of high perceived complexity.

According to Glass it is second only. The main cause for software comprehension problem is
staff turnover.

www.manaraa.com

Crossing the Borderline - From Formal to Semi-Formal Specifications 75

P2 Not all stakeholders that are forced to comprehend the systems (and then to decide)
are able to read and understand the underlying documents.

P3 Relating formal specifications with well defined semantics to less formal notations
is a loss in precision.

P4 Creating formal specifications from less formal documents is impeded due to
information deficiencies. It needs effort to fill the gaps.

What is easily overseen is that comprehending a system means the reconstruction of
the missing documentation anyway. Concerning problem PI, the overall (and inherent)
complexity cannot be reduced. But there are approaches to deal with the density of
specifications [11]. And the remaining challenges P2 to P4 (understandability and
formality) can be dealt with by consciously mapping the relevant representations to
each other. The gaps can be bridged.

2.2 Impediments

The statements so far lead to one observation: the better and more extensive the
documentation the easier the comprehension process. A less formal or less mathematical
document can also serve its purpose. And a further improvement to the situation is
to combine the formal and semi-formal documentation, to reconstruct parts of the
documentation, and to be able to switch between different types of notation as needed.

As explained below, complexity (problem PI) does not make difficulties. In fact it
is in the nature of formal specifications, and it concerns two aspects:
1. Usually there are too few clues for reconstructing the original structure. Putting

too much structure into a formal specification is understood to be a hint towards
implementation, something that is avoided at the time of writing the specification.

2. The declarative nature also impedes the reconstruction of the behavior. There is no
execution-sequence, which is known from programming languages.

Above all, the latter aspect is crucial. As there is no execution order and, in general,
there are no control statements, control- and data-dependency are not predominant
concepts. Well-known techniques from the field of program comprehension cannot be
apphed directly. A state-based specification focuses on, naturally, states, and alternative
forms of representation are then restricted to just static information, too.

2.3 Related Work

For the reasons mentioned in Section 2.2 the mapping between formal specifications
and less formal approaches is limited to static information. Besides formal extensions
to existing notations (e.g. VDM-link to UML [12], or Petri-nets with Z extensions
[13]), two directions of the mapping are possible.

Firstly, there is a mapping between some graphical notations to formal specifications.
As UML is wide-spread, most of them take static UML diagrams and generate formal
state descriptions of it (e.g. UML to Z [14,15], or UML to Z++ [16,17]). The
approaches have in coimnon that formal specification skeletons are generated which
then have to be completed by the designer. As a second step the resulting predicates

www.manaraa.com

76 Andreas Bollin

are simplified, leading, finally, to a full and compact formal specification. This means
that semantics has to be added by the designer, but when dealt with it carefully, the
specification can be taken to prove properties of the system. Results can then be mapped
back to the design documents and deficiencies eliminated.

The other way round is the mapping of formal specification to some graphical
notation. An early approach is the Z visualization of Kim [18], who makes use of
constraint diagrams (a notation formally defined by Kent [19]). The notation is able to
express predicate logic, but there is no integration into existing frameworks. And it is
not UML, which does not really ease the understanding among some stakeholders.

However, not all the time the full content has to be imparted, and UML, keeping on
spreading, is a good target for the transformation. The approach of Fekih et.al maps B
specifications to UML [20]. It takes the state space of the specification and creates
an UML class for every abstract set that is element in the domain of relations. The
transformation rules are simple but lead to incomplete class diagrams as operations are
not regarded. In addition to that the generated classes are not associated. Idani and
Ledru improve the approach by mapping occurring relations to UML associations [3].
Furthermore they take operations into account and provide an algorithm for mapping
an operation as a method to the most suitable class. Altogether this leads to a more
complete static UML diagram.

Contributions mapping formal specifications to UML diagrams follow a pragmatic
approach: sets do correspond to classes and relations do correspond to associations.
However, as also noted in [3], the resulting diagrams provide less information than the
formal specification, and dynamics is not touched at all.

3 Theoretical Background

The reconstruction of dependencies within declarative specification languages is not
straight-forward. When looking for control constructs (which will then be the basis for
the reconstruction of dynamic behavior), one has to be careful about the basic elements
the control is defined about.

3.1 Specification Primes

Specifications ai-e constructed from basic (atomic) units, called specification literals.
They can be identified by looking at the grammar of the specification language. As an
example, the Z predicate ''assigned C Permitted" contains the specification literals
''Assigned", "C", and "Permitted". Specification literals are not very expressive when
standing alone. It is the combination of literals that makes them rich in content. By
aggregating specification literals, prime objects of a specification are built.

Definition 1 A specification prime object represents the basic entity of a specification.
It is built out of specification literals and forms logic, syntactic, or semantic units.

www.manaraa.com

Crossing the Borderline - From Formal to Semi-Formal Specifications 11

Schema

S
-nS
SVT
S^T
SAT

5<^r
S \T
S%T

s:^T

Approximation via Conditions

post S =Jc pre S
posts{-^ S) =tc pre„{-< S)
post{S V r) z4, pre{S V T)
post,{S => T) =i, pre„{S => T)
post{S A T) z^c pre^{S A T)
post,{S -^ T) ^ , pre„{S ^ T)
post{S r T) =1, pre^{S \ T)
posts(S g T) z:tc pre{S l T)
post,{S » T) =Jc pre{S » T)

Related Primes

pos =4c prs
pos =tc prs
{posUpor} ^c (prs Uprr)
ipos Upor) =ic (prs Uprr)
(pos Upor) =4c (prs Uprr)
ipos Upor) ^c {prs Uprr)
(pos U por) =tc {prs U prr)
(pos Upor) =ic prs
{posUpor) =^cprs

Tab. 1. The table summarizes the control dependencies occurring between pre- and postcondition
primes in Z schema operations.

In specification languages prime objects can be expressions or predicates, but they
can also be generic type or schema type definitions. When looking at the decoration of
identifiers ([j or jT] for after-states), post condition primes can easily be identified.

Definition 2 A Z-specification prime p is considered a post-condition prime, if prime p
contains an after state identifier. Otherwise it is considered a pre-condition prime.

The following two predicates of the AssignResource operation schema in the
AccessControl Z Specification (see App. A) can be assigned to one pre- and one
post-condition prime,

userl ^ dom Assigned.
Assigned' = Assigned U {user? i—> resource?}

%Precondition Prime
%Postcondition Prime

as the second prime contains an after-state identifier {Assigned'). The identification
of control-dependencies is then based on these definitions.

3.2 Dependencies

The approach is based on the following simple idea: Preconditions determine whether
predicates in the postcondition part are evaluated or not. Thus in specifications
post-conditions are control dependent on pre-conditions, and the problem of the
identification of control dependencies is reduced to the problem of the identification of
pre- and post-conditions.

Not all specification languages do make pre- and post-conditions expUcit. Addition
ally, when schema operations are used, pre- and post-conditions have to be calculated by
performing a semantic analysis, a time- and resource-consuming task which cannot be
fully automated. In [11] a syntactic approximation to the semantic analysis (see Tab. 1)
is suggested and it is formally shown that this approximation yields suitable results.

Definition 3 Let S be a schema of aZ specification. Furthermore, let prs be the set
of pre-condition primes of S and pos the set of post-condition primes of S. There is
control dependency (pos =tc prs) within schema S, if prs and pos are not empty.

www.manaraa.com

78 Andreas BoUin

Type

Relation
Partial
Total
Part. InJ.

Symbol

Ar~, B
A-^B
A-^ B
A H-^5

A 1 B
*
*
'fi

0..1

«
0..1

1
0..1

Type

Part. Surj.
Total Sill].
TotalBij.
Total Inj.

Symbol

A -^ B
A-^ B
A r-^ B
A -^ B

A

1..*
1..*

1
0..1

B

0..1
1
I
1

Fig. 1. According to [3], relations between sets A and B are mapped to associations with given
multiplicities.

Table 1 summarizes the dependencies among the predicates in the schemata. When
there is flow of control, data-dependencies are easily detected:

Definition 4 A specification prime p is data dependent on a specification prime q
(p r̂ rf q) if (i) there exists at least one identifier v (literal denoting a data element) that
occurs in both p and q, and (ii) v is defined in q and used in p, and (Hi) either p and q
are in the same scope, or p is control dependent on q.

4 Semi-Formal Transformation

With the reconstruction of dependencies within declarative specifications it gets possible
to exploit both, static and dynamic diagrams of UML. In the following the Access
Control system (see App. A) is taken to illustrate the transformation process.

4.1 Static Diagrams

The mapping to static class diagrams is based on the idea of looking for global type
definitions. It follows mainly the approach of Idani et. al. [3], but omits assigning the
operations to derived (and hard to find pertinent) classes. Instead it introduces a system
class and assigns the operations to it.

Rule 1 Every state schema corresponds to a root class with the stereotype «system»
and the name of the schema.

Rule 2 In a Z specification "given sets" correspond to classes in the UML specification.
They are connected to the system class by using a "use" association.

Typically this exactly is the view of a specification's designer: having a state and relevant
operations. Abstract types are mapped to classes, and these classes are associated to the
system class.

A specification also consists of several identifiers holding the state. When they
describe relations between given sets, then they are resolved as associations. Subset
relations (c or C) are made explicitly. Finally, operation names are added, and for the
description of the diagram unique names for the associations are introduced:

Rule 3 Every variable representing relationships between entities in the state schema is
translated to associations. It holds that (i) multiplicity is resolved by the mapping rules
presented in Fig. 1, and (ii) subsets between relations are resolved by a subset constraint.

www.manaraa.com

Crossing the Borderline - From Formal to Semi-Formal Specifications 79

«system»
AocessControl

AccessControl (): AocessControl
AddPermission {in u; USER, r: RESOURCE)
LlslUsers (in r: RESOURCE): Veotor<USER>
AssignResource {in u: USER, r; RESOURCE)

.
« U S 6 »

ADDRESS

0..1 rejp

« U S 6 »

*

* re as

USERS

IpAddress

« u s e »

Assigned

{subset 1
Assigned)!

* Permitted f

Unused

*

0..1 us_as \ /

RESOURCES

re_p6 usjje
adjp •

•

Fig. 2. Applying Rules 1 to 6 leads to a static UML Diagram for the Access Control system
specification (see Appendix A).

Rule 4 Every variable representing a subset of entities in the state schema is translated
to a specialization class and connected to its root class.

Rule 5 Associations do get role-names. They are built by combining the first characters
of the source class and association name.

Rule 6 Every operation schema is added as a method to those system root class, which
has been included in the operations' declaration part. The initialization schema is
mapped as a constructor to this class.

Fig. 2 presents the result of the transformation. The system class contains the
operations. As there are three given set definitions (Users, Resources, Addresses), three
classes are introduced and connected to the system class. Unused is modelled as a
subset of Resources, and Assigned and Permitted are enriched by a subset constraint.

In fact, the above algorithm leads to class/attribute candidates. Still some problems
with the transformation remain. It works well when there is only a small set of given
sets. With larger specifications the approach of taking given sets as classes leads to a
huge static UML diagram. Carving out higher-level concepts [5] and grouping them
into extra diagrams might be a way out.

4.2 Dynamics

UML also allows for dynamic diagrams, and as there is also some sort of dynamics
within specifications it should be represented in a convenient way. The approach makes
use of UML's activity diagrams and focusses on the above defined notion of control
and data dependencies.

Rule 7 Every schema operation is represented by an activity diagram. Logical operations
are resolved as boolean expressions. Sequential operations are transformed to sequential
control arcs.

www.manaraa.com

80

(a)

Andreas Bollin

Active AccessC on trol

C
I

InttAccessControl J

1
('AddPermission

(_ LIstUsers _)

fAssignResourcB^

k

I
(inUAccassControl J

(AddPermission j

1
(b)

post;
Permitted =
Assigned =
IPAddress

= null; j
= null;
= null;

t x
isSubset{Assfgn6d .Permitted)
haslntersect!on(Unused, Assigned)

«sys tem»
AccessControl

AccessControl () ; AccessControl
inPennitied(u,r,p) == false; | JAddPermission (In u: USER, r: RESOURCE)

LIstUsers (in n RESOURCE): VectQr<USER>
AssignResource (in u: USER, r: RESOURCE)

pre;
inPGrmitted(u,r.p};
inAssigned(u,r) == false;

Leqend:
u... USERS, r... RESOURCES,

\
\

a... assigned, p... permitted, x... Unused
isSubset...{a}c{p}
haslntersection ... {x) ^ a}
inPermitted... (u.rje {p)
inAssigned ... U€ {a}

post;
inPermitted(u,r);

post;
inAssigned(u,r) == true;

Fig. 3. (a) Applying rules 7 and 8 leads to two UML Activity Diagrams, (b) applying rule 9
leads to an annotated static UML Diagram that malces use of OCL-like annotations.

Rule 8 Control dependencies between two operations are mapped to activity diagrams
with control flow vertices. Data dependencies are mapped to activity diagrams by using
object flow nodes with the label of the relevant identifier(s).

The specification has one schema operation called ActiveAccessControl. It contains
a sequential schema operation and tlie logical combination of the remaining operation
schemata. Fig. 3(a), left side, presents the result of rule 7. It puts the initialization in
sequence to the operations, which are logically combined by an OR-operation.

According to the definition of control dependency and the rules in Tab. 1 there is,
e.g., control dependency between the two schemata Accei'.sConfro/ and AddPermission
(as AddPermission includes the state schema and has post-condition primes which get
dependent on the AddPermission'& pre-condition primes). Another diagram is added
and thus makes the control dependency explicit. Due to the fact that there is also
data-dependency (the value of Permitted is relevant), Permitted is added as an object
flow node. Finally, the more formal part of the specification must not be forgotten. By
using OCL constraints, the relevant pre- and post-condition predicates can be included.

Rule 9 Pre- and Post-conditions of operation schemata are mapped to pre and post
OCL comments to the system class; the predicates of the state schema are mapped to
the class as OCL invariants. For Z operations expressive function names are to be
chosen, their semantics is to be explained in a legend box.

www.manaraa.com

Crossing the Borderline - From Formal to Semi-Formal Specifications

L{1)

S,

l-i2) i , . -
AJUSfRS) I A{ljESOURCEg) A{ADDRESSES}
T{US^SiJ^TiRES0URp6S) T{ADDRESSES)

Line
1
2
3
4
6

E, > * -
L{3)
A{\\)\end{zed}}

[USERS, RESOURCES, ADRESSES]

A{\begin{schema){AccessContro!}}
T{AccessControi}

L(10y U-ll}
A{(^signed \subset^^Unused \cap
P,jfrniitted} ^y {ran Assigned)

^^^v--^' = \emptyset}

— AccessControi
Pemitted : USERS <-> RESOURCES
Assigned: USERS +> RESOURCES
IpAddress: ADDRESSES •*> RESOURCES
Unused: PRESOURCES

Assigned E Permitted
Unused r\ (ran Assigned) =

AddPermission
A AccessControi
user?; USERS
resource?: RESOURCES

(user?h-> resource?) f£ Permitted
Permitted' =.Permitted v^(user?i->resource?)

L{21)i
A{\Dfi|ta I Afilser? : USERS) _^ermitted' = Permitted taup
AcceS^onioi) _^̂ {user7) ^ ^ {user? \mapsto resource?)

^^ " "^^ •"' ' U{user?, resource?)
(E4 p D{Permmed)

A{\end(schema))

Fig. 4. Parts of the ASRN net representation and source of the AccessControi specification.
Primes are mapped to vertices and annotations are used for the transformation process.

Fig. 3(b) demonstrates the result of the transformation to a set of OCL comments.
The constructor (initialization schema) gets a postcondition constraint, the three
operation schemata get a pre- and post-condition each. The post-condition of ListUsers,
e.g., tells us that the appUcation does not change the set of resources (r = = r • pre,
the after-state is the same as the before state). The system class is associated with the
class invariant. Typically as is, predicate logic, Z functions, and operations are difficult
to express in OCL. Here it is suggested to choose mnemonic names instead.

4.3 Automatic Generation

Specification primes are the basic, semantics-bearing elements of a specification.
In [4,11] it is described that state-based specifications can be mapped to a graph
representation called ASRN {Augmented Specification Relationship Net), and that this
graph can be used to detect dependencies by just breaking down the task to reachability
conditions. This net is now used to simplify the transformation to UML. A small part
of the AccessControi ASRN net can be found in Fig. 4.

The basic idea behind the net is that higher level primes are made up of a set of
start and end vertices - which contain prime elements. Every vertex gets annotated
(line numbers, text, and definition and use information of literals), and references and
dependencies to other primes are expressed by (classified) edges between these primes.

The mapping process to UML is then straight-forward. Rules 1, 2, and 6 are based on
the identification of state and operation schemata. Relevant start vertices have to contain

www.manaraa.com

82 Andreas Bollin

type-declarations (T{someJd}). By looking at their successor vertices, operations and
state schemata get separated (as only operations contain Delta and Xi annotations
referencing other state schemata) and the corresponding UML diagrams can be generated.
When all state schemata are identified, rules 3, 4, and 5 are resolved. Associations ai'e
resolved by looking at related prime vertices that contain type-declarations and relevant
speciiication annotations (like «-> or -H , according to Tab. 1).

The same approach is used for the generation of activity diagrams (rules 7 and 8).
As the ASRN also contains control and data-dependency arcs, they are easily mapped
to transitions in activity diagrams. Finally, for the generation of the OCL text (rule 9),
again the annotations connected to the primes (A(source)) are parsed and printed.

Mapping the rules (on the basis of the ASRN) to a program is straight forward and
tlie transformation can be done in reasonable time. However, the problem is still tlie
neat visuaUzation of all the diagrams - and for an optimal positioning of all the objects
on the screen some user action is still needed.

5 Conclusion

Comprehension is an inevitable task during software maintenance and development
phases, and specifications, when kept up-to-date, are valid sources. However, due to
their complexity it is not surprising that formal specifications languages are said to be
write-only languages.

This paper discusses ways in transforming formal Z specifications to UML in order
to open the documents to a wider range of stakeholders. Existing approaches only cover
static information, but state-based specifications also deal with state changes - and thus
dynamics. In contrary to existing approaches (which the pure focus on class diagrams)
this paper suggests to make also use of activity diagrams. It explains how to identify
control dependencies, which are then the basis for the latter reconstruction of dynamic
behavior within declarative specifications.

There are still some limitations that should not be concealed. As with other
approaches the issue of scalabihty is not solved, and in addition to that it is still hard to
decide whether a class candidate is a pertinent class or not. To test the applicability of
the approach a framework for dealing with large Z specifications (combining slicing,
chunking, and UML transformation) is under further development.

The approach does, by far, not lead to a perfect UML representation of the
specification. But it provides a good picture of what is in the specification. In fact
it can at least be used to speed up the re-construction of concepts behind. And as
dynamics is at least as important as statics, this approach should be a step further into
the direction of a more useable framework and increase the use of formal specification.

References

1. Laleau, R., Mammar, A.: An overview of a method and its support tool for generating B
specifications from uml notations. In: Fiftheenth IEEE Conference on Automated Software
Engineering. (2000)

www.manaraa.com

Crossing the Borderline - From Formal to Semi-Formal Specifications 83

2. Truong, N.T., Souquieres, J.: An approach for the verification of UML models using
B. In; Proceedings of the 11th IEEE Conference and Workshop on the Engineering of
Computer-Based Systems (ECBS'04). (2004)

3. Idani, A., Ledru, Y.: Object oriented concepts identification from formal B specifications.
In: Formal Methods in Industrial Critical Applications, FMICS'04. (2004)

4. Mittermeir, R.T., BoUin, A.: Demand-driven specification partitioning. In: Proceedings of
the 5th Joint Modular Languages Conference, JMLC'03. (2003)

5. BoUin, A.: Maintaining formal specifications. In: Proceedings of the 21st IEEE International
Conference on Software Maintenance (ICSM 2005), Budapest, Hungary. (2005) 442-453

6. Spivey, J.: The Z Notation. C.A.R. Hoare Series. Prentice Hall (1989)
7. Glass, R.L.: Facts and Fallacies of Software Engineering. Addison-Wesley (2003)
8. Basili, R.V.: Viewing maintenance as reuse-oriented software development. IEEE Software

7(1) (1990) 19-25
9. Pirker, H.: Specification based Software Maintenance (a Motivation for Service Channels).

PhD thesis, University of Klagenfurt (2001)
10. Banker, R.D., Davis, G.B., Slaughter, S.A.: Softwai'e development practices, software

complexity, and software maintenance performance: A field study. In: Management Science.
Volume 44., Inst, for Operations Research and the Management Sciences (1998) 433-450

11. BoUin, A.: Specification Comprehension - Reducing the Complexity of Specifications. PhD
thesis. University of Klagenfurt (2004)

12. Dick, J., Loubersac, J.: A visual approach to VDM: Entity-structure diagrams. Technical
Report DE/DRPA/91001, Bull, 68, Route de Versailles, 78430 Louveciennes (France) (1991)

13. He, X.: PZ Nets - a formal method integrating Petri Nets with Z. Information and Software
Technology 43(1) (2001) 1-18

14. Dupuy, S., Ledru, Y., Chabre-Peccoud, M.: An overview of RoZ: A tool for integrating
UML and Z specifications. In: Proceedings of CAiSE'OO. (2000) 417-430

15. Idani, A., Ledru, Y, Bert, D.: Derivation of UML class diagrams as static views of formal
B developments. In: 7th International Conference on Formal Engineering Methods, ICFEM
2005. (2005) 37-51

16. Kim, S.K., Carrington, D.: A formal mapping between UML models and Object-Z
specifications. Lecture Notes in Computer Science 1878 (2000) 2-21

17. Roe, D., Broda, K., Russo, A.: Mapping UML models incorporating OCL constraints
into Object-Z. Technical Report ISBN/ISSN: 1469-4174, Imperial College of Science,
Technology and Medicine, Department of Computing (2003)

18. Kim, S.K., Carrington, D.: VisuaUzation of formal specifications. In: In Proceedings Sixth
Asia Pacific Software Engineering Conference (ASPEC'99), IEEE Computer. Society Press,
Los Alamitos, CA, USA (1999) 102-109

19. Kent, S.: Constraint diagrams: Visualising invariants in object-oriented models. In: In
Proceedings of OOPSLA'97, ACM Press (1997)

20. Fekih, H., Jemni, L., Merz, S.: Transformation des specifications B en des diagrammes UML.
In: Approches Formelles dans lAssistance au Developpement de Logiciels, AFADL'04.
(2004) 131-148

www.manaraa.com

84 Andreas Bollin

Appendix A - Access Control Specification

[USERS, RESOURCES, ADDRESSES]

, AccessControl _
Permitted : USERS ^ RESOURCES
Assigned : USERS ^ RESOURCES
IpAddress : ADDRESSES -+» RESOURCES
Unused : FRESOURCES

Assigned C Permitted
Unused n {x&n Assigned) = 0

_ InitAccessControl.
AccessControl

Permitted = 0
Assigned = 0
IpAddress — 0

^AddPermission
AAccessControl
userl : USERS
resource? : RESOURCES

{user? 1—> resource?) ^ Permitted
Permitted' = Permitted U {user? i—> resource?}

_ ListUsers
SAccessControl
resource? : RESOURCE
st\ : P USERS

st\ = dom{Permitted > {resource?})

-AssignResource
AAccessControl
user? : USERS
resource? : RESOURCES

{user? I—» resource?) € Permitted
user? ^ dom Assigned
Assigned' = Assigned U {user? i—> resource?}

ActiveAccessControl = = InitAccessControl g
{AddPermission V ListUsers V AssignResource)

www.manaraa.com

Modeling of Component-Based Self-Adapting Context-
Aware Applications for Mobile Devices

Kurt Geihs', Mohammad U. Khan^, Roland Reichle
Amor Solberg^, Svein Hallsteinsen^

' University of Kassel, Wilhelmshoeher AUee 73, FB16,
34121 Kassel, Germany

{geihs, khan, reichle} @vs.um-kassel.de
http://www.vs.uni-kassel.de/
2 SINTEF ICT, Strindveien 4,

NO-7465 Trondheim, Norway
{Arnor.Solberg, Svein.Hallsteinsen} @sintef.no

Abstract. A challenge in distributed system design is to cope with the dynamic
nature of the execution environment. In this paper, we present a model-driven
development approach for adaptive component-based applications running on
mobile devices. Context dependencies and adaptation capabilities of applica
tions are modeled in UML. We present our new modeling approach and UML
profile. A short description of the required middleware infrastructure is given
and the transformation technique of the UML models to platform specific code
is briefly introduced. An application example illustrates the modeling and de
velopment approach. The presented research results have been obtained as part
of the European 1ST project MADAM.

1 Introduction

Many people carry a mobile device of some sort wherever they go, and an increas
ingly diverse set of mobile devices (PDAs, smart phones, laptops etc.) are becoming
widely available. As a matter of fact, people become more and more accustomed to
using mobile services ubiquitously in both work and leisure situations. Clearly, the
performance and quality of mobile applications crucially depend on the dynamically
changing properties of the execution context, e.g. communication bandwidth fluctu
ates, error rate changes, battery capacity decreases, and a noisy environment may
obliterate the effect of sound output. Therefore, applications on mobile devices need
to adapt themselves to their current operational context automatically according to
goals and policies specified by the user and/or the developer.

The development of self-adapting applications opens up a great challenge: The
range of devices, types of infrastructure, types of context dependencies, ways in
which context can change, situations in which users can find themselves and the func
tions they want, introduce great complexity and demand a systematic, general meth
odology to design and implement self-adapting applications.

Please use the following formatwhen citing this chapter:

Geihs, K., Khan, M.U., ReicWe, R., Solberg, A., Hallsteinsen, S., 2006, in IFIP International Federation for Information
Processing, Volume 227, Software Engineering Techniques: Design for Quality, ed. K. Sacha, (Boston; Springer), pp.
85-96.

www.manaraa.com

86 Kurt Geihs, Mohammad U. Khan, Roland Reichle, Arnor Solberg, Svein Hallsteinsen

Our goal is to develop such a methodology for fature self-adapting applications.
We want to provide users with applications that are robust and retain their usability
and good performance even in the case of context changes. At the same time we want
to li"ee system developers and system managers from much of the low-level details of
configuration, operations and maintenance activities.

In this paper we present the modeling of adaptive applications with UML as part of
an MDA-based development approach. Self-adapting applications are built as com
ponent frameworks with integrated variability, i.e. the application developer specifies
variation points when designing an application. During application runtime, if the
context changes, adaptation is performed by selecting a suitable application variant,
i.e. component configuration, that fits to the cuirent context conditions. All of this is
supported by a powerful middleware platform. The choice of using the UML as tlie
modeling language stems from the intention of achieving the benefits of the MDA
approach in the application development and complying with popular UML tool envi
ronments. Our UML adaptation model is platform independent and it can be auto
matically transformed to programming language code,

Section 2 of this paper contains an overview of the basic concepts for adaptation
and the system architecture and presents the underlying development approach. In
Section 3 we present our modeling approach. A new UML profile facilitates the
specification of adaptive applications together with its context dependencies. An ex
ample is given to illustrate the approach. Section 4 very briefly introduces the model
to code transformation technique. Related work is discussed in Section 5. Finally, in
Section 6 we coimnent on experiences with the approach, and we point to future
work.

2 Adaptation Approach

The goal of adaptation is to provide the best possible service to the user based on the
cuiTent context and user preferences. In order to facilitate the development of applica
tions that are able to adapt to context changes, the developer must specify how alter
native variants can be derived. These variants provide the same basic functionality
but differ in their extra-functional characteristics and resource requirements. In order
to facilitate reasoning and decision making about adaptation, the developer must
specify the context dependencies and a utility function that is evaluated to estimate
the suitability of a variant in a given context. In the following we present a conceptual
model for designing applications with built-in variability and, their relation to the
context. The underlying middleware that provides the platfoiTn to run the applications
is briefly introduced.

2.1 Application Variability Model

In our approach applications are component based and the variability is achieved
by applying similar concepts as used by the product family community [1]. The varia
tion points are realized by using the concepts of ComponentType and Plan.

www.manaraa.com

Modeling of Component-Based Self-Adapting Context-Aware Applications 87

Conceptual Component Model. According to Szyperski [2], a Component is a unit
of composition with contractually specified interfaces and explicit dependencies
where dependencies are specified by stating the required interfaces and the acceptable
execution platform(s). Naturally, components may be composed of other software
components and may use other components or resources. Oui' component model is
consistent with the concepts of existing component models like CCM, EJB and .NET
with the exception that in our current implementation, we use a single class for
realizing the atomic component. But this concept is easily extendable.

The conceptual component model of our approach is shown in Figure 1. A Com
ponent has exactly one type. A Component Type can have different realizations. It
provides and requires services through ports. The characteristics of the component
type are defined through its set of Port Types. The Port Type is specified thî ough its
set of extra functional characteristics represented by its required and provided
QoS_Properties. The functional characteristics of a Port Type are represented by its
provided and required interfaces.

Interface
-*-/requiredlnt

QoS_iProperty

+/p.ovidedlnt

+/prQvidedProperties *

+/requ(redProperties

Port Typ^ ;

realizes

QoS;:.P roperty_C onstraint

UserEnyEnttty
influence

Component lype

realizes a
Component

T"

w
^

-^
Software Component ^

Fig. 1. Conceptual component model

The specification of provided and required services can be seen as defining con
tracts between components. The Port Types define component contracts through their
associated provided and required QoS_Properties. Property constraints associate con
crete values with the properties of a component, which may be expressed as constants
or as expressions.

A Component can be a SoftwareComponent, a Resource or a UserEnvEntity. A
SoftwareComponent can be composed of other components and may collaborate with
other software components and use resources through its ports. A Resource represents
a ran time source of supply and has a limited capacity, which is expressed by its prop
erties. During rantime, consumption and availability of the resource may vary and
need to be monitored by middleware services.

www.manaraa.com

88 Kurt Geihs, Mohammad U. Khan, Roland Reichle, Arnor Solberg, Svein Hallsteinsen

The User in the model of Figure 1 represents the actual user of the applications.
UserEnvEntity represents entities of interest in the user environment, such as light
and noise. The user environment entities may impact resources and other user envi
ronment entities.

In our work we have identified three types of context, i.e., user context that relates
to the user of a service, system context that encompasses the properties of the execu
tion enviromnent of an application and apphcation context that encompasses the
properties of an application providing a service. Context elements are realized
through components and context characteristics are expressed as QoS properties of
the component.

Dynamic Creation of Application Variants. In our conceptual model an application
is represented by a Component Type. The recursive closure of all realizations
corresponds to what is often referred to as a component framework [2].

Meta-level description Component concepts

describe
reaiizatton of

Composition
Plan

Application
Type

1 is a

Component
Type

Blueprint
Plan

* de

'i

1
sc f̂bec

realize
Component

specialize

Atomic
Component

by__...
I

Composite
Component

described by

Fig. 2. Component framework

In Figure 2, an application is a software component and an Application Type is
considered to be a Component Type. The realization of a Component Type is de
scribed using Plans. Components can be atomic as well as composite; accordingly
there are two types of Plans: Blueprint Plan and Composition Plan. A Blueprint Plan
describes an atomic component and it basically contains a reference to the class that
realizes the Component. The Composition Plan recursively describes a composite
component by specifying the involved Component Types and the connections be
tween them. A plan represents one possible realization of the associated component
type. Variation is obtained by describing a set of possible realizations of a Compo
nent Type using Plans.

The representation of applications as Components, Component Types and Plans
enables the automatic creation of application variants by recursively resolving the
variation points. This reduces the modeling effort significantly. The application de
veloper has to provide only the overall component structure of an application, but
there is no need to specify all the possible application variants explicitly. The model
ing of one Composition Plan can result in several application variants. In a Composi-

www.manaraa.com

Modeling of Component-Based Self-Adapting Context-Aware Applications 89

tion Plan only the cooperating Component T3^es are specified, which in turn can
have several different realizations described by their corresponding Plans. Besides, if
another component is developed that realizes an already existing Component Type
further application variants can be derived without much additional modeling efforts.
Only the Blueprint Plan and the extra-functional properties of the component have to
be specified.

2.2 Middleware Support for Adaptation

The structure of the middleware platform for running the applications is shown in
Figure 3. The Context Manager monitors and processes the context information by
means of context sensors. The Adaptation Manager receives context information and
decides about the adaptation activities. If adaptation is needed, the Adaptation Man
ager dictates the Configurator to start up the appropriate configuration.

Context Adaptation Configt.-
Manager Manager ralor

Middleware Core

Fig. 3. Middleware building blocks supporting self-adapting applications

The middleware core is responsible for the automatic creation of the application
variants as described in the previous section and provides fimdamental services for
the management of applications, components and component instances. The core re
lies on the basic mechanisms for instantiation, deployment and communication pro
vided by an underlying distributed computing infrastructure.

The Adaptation Manager reasons on the impact of context changes and is respon
sible for selecting the application variant (or set of application variants if multiple ap
plications are running) that best fits tire current context. In order to evaluate the ap
propriateness of a particular variant of an application, the utility of the variant is
computed. Utility functions along with QoS properties are assigned to each Compo
nent Type. For a composite component, the utility value and property constraints can
be derived from these.

The Configurator is responsible for the instantiation and configuration of the com
ponents that form the selected variants of the running applications.

3 Model Development

We follow the Model Driven Architecture (MDA) approach [3]. An abstract, plat
form-independent model is needed to capture the adaptation capabilities of complex
apphcations and an automatic transformation to code eases the implementation sub
stantially because it reduces the probability of making mistakes such as omitting pos
sible appUcation configurations in the implementation.

www.manaraa.com

90 Kurt Geihs, Mohammad U. Khan, Roland Reichle, Arnor Solberg, Svein Hallsteinsen

For the platform-independent modeling, we use standard UML 2.0 specification
[4]. In addition to this, we extend the standard UML 2.0 specification by introducing
a new UML profile, in order to allow generating absti'act descriptions of the applica
tion's variability and adaptation capabilities. This abstract specification is trans
formed to appropriate Java code that is responsible for creating the data structures for
the Component Types and Plans and for publishing them to the middleware. Our
UML-based model builds on experiences with an earlier XML-based model [5].

3.1 UML Profile

We use the UML 2.0 Composite Structure as a baseline in order to model the apphca-
tion architecture. All entities that represent the application context, the resources and
the software components (see the conceptual component model in Figure 1) that com
prise the applications can be modeled and linked by appropriate associations. For
modeling architectural design we have extended the sub-packages IntemalStructures
and Ports described in the UML 2.0 superstructure specification. The complete de
scription of the profile is beyond the scope of the paper and in the following we pre
sent the most relevant part of the profile used for modeling the adaptibilty of applica
tions.

The UML profile defines the component types of the conceptual model by extend
ing the EncapsulatedClassifier of Composite Structures, as shown in Figure 4. Thus, a
component type of the conceptual model of Figure 1 is defined as an Encapsulated-
Classifier. UserenvEntities, resources and software components are realizations of a
Component Type. A Plan describes the realization of a ComponentType.

«Stereotype»
Plan

/
«Stereotype»

CompositlonPlan

\
\

describes -s,
realization ^

\
«Sleraotype»
BlueprintPlan

«metaclass»
EncapsulatedClassifier

«extends»

1
«Stereotype»

ComponentType

t
«Stereotype»
Application

«extends»

^ realizes
V.

y
"Stereotype"
UserenvEntity

/

«Stereotype»
Component

^ A \

«Stereotype»
Resource

^
\

«Stersotype»
SoftwareComponent

Fig. 4. Plan, Component Type and Component are considered as classes with intemal struc
tures

Figure 5 presents the stereotypes for QoS_Property and PortType. The
QoS_Property extends the UML metaclass Property in order to express the extra-
functional properties of different variants of apphcations. QoS_Properties are pro
vided or required through ports. Ports realize Port Types. Port Type is an extension of
the UML Port metaclass and it is characterized through its provided and required QoS
properties.

www.manaraa.com

Modeling of Component-Based Self-Adapting Context-Aware Applications 91

«SterGotype»
Port

«metacfass»
Port

«exteids»

«Stereotype»
PortType

+ProvidedQoS

+Requ5redQoS

«m©taclass»
Property

«extelds»

«Stereotype»
QoS_Property

Fig. 5. QoS_Property extends UML Property and PortType is an extension to UML Port meta-
classes

For property constraint and utility function we have the following stereotypes:
QoS_Property_Constraint, Required_QoS, Provided_QoS and UtilityFunction as
shown in Figure 6.

«Stereotype»
utility

«Stereotype»
UtilityFunction

Fig. 6. Property and PropertyConstraint

A QoS_Property_Constraint defines constraints on a Property for a particular com
ponent. The Property is provided or required through the port types of the component
type. The stereotypes Provided_QoS and Required_QoS include a set of property
constraints and indicate if the Property is required or provided respectively. Utility-
Function is a generalization of the UML 2.0 standard stereotype « u t i l i t y » , which
designates classes having no instances; but denoting non-member attributes and op
erations. This provides a basic support that satisfies our requirement of expressing the
utility of application variants as functions.

3.2 Modeling Example

The modehng technique has been applied to develop two comprehensive distributed
applications. Here we use one of them, namely the SatMotion application in order to
illustrate the modeling.

The actual modeling of the application starts with the modeling of requirements
along with the context and its resources. Here we present a simplified model to focus
mainly on the modeling of self-adaptation. Our emphasis is on the variability model
of the appUcation which is used to automatically derive the application variants (ar
chitecture). Diuing the adaptation process, the suitability of these variants is evalu
ated and the best fitting variant is chosen to run.

www.manaraa.com

92 Kurt Geihs, Mohammad U. Khan, Roland Reichle, Amor Solberg, Svein Hallsteinsen

Description of the Application. SatMotion is a commercial distributed application
that facilitates the setting up of Internet connections via satellite terminals (also
known as VSAT terminals). It basically provides assistance to the field installer on
the antenna aUgnment procedure. It runs on PDAs (e.g. IPAQ) and conventional
laptops. The client software of SatMotion consists of a control module, a command
editing module, a graphics module, a math processor module, a recording module and
an offline analysis module. The sei'ver software consists of a communication control
module, a storage module and an instrumentation control module.

The SatMotion application offers two main operating modes: Two-Way and One-
Way. For both modes, two sub-modes, BasicClient and Recorder, are available which
are active depending on the concrete task to be perfoimed by the user. The Two-Way
mode implements a two way communication tool able to command the remote in
strument, which receives signal traces information from the server and can also send
commands to the server side. SatMotion One-Way is a simplified version of the Two-
Way mode, enabling just one-way communication for the reception of information
from the server. While the Two-Way mode requires a low-latency and highly reliable
connection to perform bidirectional operations, the One-Way mode can work with a
lower network quality to offer the same real-time signal visualization to the user.
Both operating modes, Two-Way and One-Way are complemented by an offline cli
ent mode. This variant needs no network connection and is able to play, perform
measurements, generate reports etc. on recorded spectrum activity, received previ
ously in an online mode (either One-Way or Two-Way) and stored on the handheld.
As indicated by the three different modes, the self-adaptive capabilities of the appli
cation address mainly changes in the network context.

The selection of different variants of the application also depends on the internal
and external context and resource conditions of the application. Examples for the re
sources and context elements are: device resources (power drain, power level, mem
ory, processor), user environment (light source, noise), system infrastructure (I/O ex
tension, screen dimensions, screen colours, brightness), network (type, latency,
capacity, throughput), application (status, operating mode), etc.

Variability Model of the Application

«GdmposilionPlan»

OniineTWBasicClient

«GomposttionPtan»

OntineTWRecorder

Describes

Describes reaiizationf^

Describes

eaiizatton Describes rea

«App!icafion»

SatMotion

realization Describes

.. <<CornpositionPJan».

OnfineOWBaslcCliQnt

«BluBprintPiari» .

StandBy;

ization

^ D e s c r i b e s realization.

realization

«CornpQsitiohPlan»

OfftineCtient

«ComppsitiDnPlan»

OnlineOWRecorder

Fig. 7. Plans for the SatMotion application

www.manaraa.com

Modeling of Component-Based Self-Adapting Context-Aware Applications 93

In the variability model, the SatMotion application is represented as a Component
Type that can be realized by any of six Plans, e.g. OfflineClient, OnlineTWRecorder,
StandBy etc. as shown in Figure 7, Thus variability is introduced through the possi
bility of choosing among different plans for the application.

A BluePrintPlan represents the end of tlie recursion and describes the details of an
atomic component. As shown in Figure 7, the SatMotion application can be realized
according to one BluePrintPlan and five CompositionPlans. A composition plan is
fiirther specified recursively through other composition plans and blueprint plans.

;<ComponentType;
ui

Ul TO MATH

MATH TO Ul

GC_TO Ul «Con|p6nentType»
- & r i Cpntholler

Ul TO GC

:6mponentTypl
MathPrbcessor

GC TO MATH

MATH TO GC

Fig. 8. Component types and their associations in the OnlineTWBasicClient Plan

Let us look at the OnlineTWBasicClient plan of Figure 7. Its component composi
tion is shown in Figure 8. The component types UI, Controller and MathProcessor
will be decomposed further until all possible variation points have been resolved and
the recursion stops at a BluePrintPlan. Please note that all of these possible variations
are evaluated in the Adaptation Manager at run-time in terms of their specified utility.

An example of a BlueprintPlan describing one possible realization of the Control
ler Component Type and providing a OneWayController is shown in Figure 9. It con
tains a definition of a Utility Function, the Component itself and the Property Con
straints of the various ports of the component regarding device resources and
network.

, i - i ' - i j " : f; "•
, - ; ' • • , • . • . - • = - W.i

• .' •:.•:' • ! • .

«UtilityFunction»
OneWayControllerUtility 1

sSoftwaVeCp mponents
OneWayGontrolier JrO_DEV_R^- ' "

t....-,.. '.̂r:
. . . . • . p -

>-= -" - - ! ; / : ; :

- . • - • ^ ~

. . • . •J 0 . , ' ,

• ,,i.i-r,\.

Figure 9: BlueprintPlan for a OneWayController

In Figure 9, simple expressions are shown as QoS_Property_Constraints. How
ever, in most cases property constraints can be represented as larger arithmetic ex
pressions involving a number of different QoS_Properties.

It is to note here that there are architectural constraints that can limit the creation of
meaningful application variants. For example, a OneWayController can only use a
one way mode of the UI, thus its combination with a TwoWayUI will be futile. More-

www.manaraa.com

94 Kurt Geihs, Mohammad U. Khan, Roland Reichle, Amor' Solberg, Svein Hallsteinsen

over, there can be components realized by the same class but with slight changes in
their property requirements that can be adjusted by simple configuration parameters.
Having separate Blueprint Plans for each of them would cause a big modeling effort.
We are currently working on these issues and modeling support will be provided ac
cordingly in the near fiiture.

4 Transformation of the Model to Programming Language Code

Development of the abstract model and performing automatic code generation pro
vides high flexibility. If another target-platform should be addressed, the abstract high
level model can be reused, only the transformation has to be adjusted to meet the
needs of the new platform. Furthermore, if changes in the overall structure of the ap
plications are necessary, the modifications can be done at the higher abstraction level
of the model and the corresponding code is generated automatically. Abstract system
specifications are also useful to manage the set of application variants and to ensure
completeness.

In our work, we use the Eclipse Modeling Framework, in which UML modeling
tools like Omondo and Borland Architect Together can be integrated. The UML
model of the application can be exported as XMI according to the metamodel defined
by the EclipseUML2, which is a lighter version of the OMG UML 2.0 specification.
The UML2 model exported as XMI is taken as input to generate programming lan
guage code using MOFScript, which comes as an Eclipse plug-in. The generated code
is then published to the middleware.

The transformation technique is introduced for the completeness of the MDA ap
proach; however, this paper focuses mainly on the modeUng aspect and the details of
the transformation technique are beyond its scope.

5 Related work

There are several research projects dealing with the development of frameworks and
middleware in order to support adaptive applications. Examples are CASA [6], Con
ductor [7], QuO [8] and Rainbow [9]. In these projects, adaptation modeling mainly
focuses on the rules and strategies for adaptation. Coming from a different perspec
tive, TRAP/J [10] supports application adaptation for existing Java applications by
means of reflection and aspect oriented programming techniques.

Our work is based on the model-driven development paradigm and aims at plat
form independent but middleware-specific specifications of the variability and adap
tation capabilities of applications. In order to allow the selection of the best fitting
application variants based on the utility concept, we have to provide modeling sup
port for the extra-functional properties and property constraints of applications.
Therefore parts of our UML profile naturally provide similar modeling constructs as
OMG's UML Profile for Quality of Sei"vice and Fault Tolerance Aspects [11] which
includes modeling support for QoS constraints.

www.manaraa.com

Modeling of Component-Based Self-Adapting Context-Aware Applications 95

Examples for other research projects exploiting the benefits of the model-driven
development paradigm and extending UML for providing the platform independent
modeling support are MODA-TEL [12], aiming at the MDA-based development of
telecommunication systems, and COMBINE [13], dealing with the component based
development of enterprise systems. However, these projects focus on the model-
driven development of static applications, whereas we aim at modeling the dynamic
variability and self-adaptation capabilities of applications.

Another project developing a framework for adaptive mobile applications and ser
vices is FAMOUS [14]. However, the project does not emphasize the model-driven
development approach and therefore does not aim at automatic code generation from
platform-independent models. In [15] an adaptive middleware framework for context-
aware applications is presented. However, it lacks the discussion of the development
support for adaptive applications.

6 Conclusions

In this paper we have presented a modeling technique for self-adapting, context-
aware applications with UML 2.0 in line with the Model Driven Architecture ap
proach of software development. Our focus has been on the specification of applica
tion adaptability. The abstract platform-independent adaptation model is transformed
to platform-specific code by a transformation.

The specified modeling and transformation techniques have been applied and
tested with the development of two real-life commercial distributed applications. Our
experiences are promising and support our initial hypothesis; An abstract, platform-
independent model facilitates considerably the engineering of adaptation capabilities
of complex distributed applications. The model supports dynamic configuration
evaluation and selection of suitable application variants at run-time. The automatic
transformation to code eases the implementation to a large extent and it reduces the
probability of omitting possible application configurations in the implementation.

While working with the trial applications, we have found out that when adaptation
occurs often appUcation configurations are evaluated that are practically infeasible. In
order to reduce the computational complexity we need to avoid these configuration
plans up-front. As fiiture work, we will extend our modeling support for the concepts
like architectural constraints and parameterized components in order to solve the
above mentioned problems. The transformation support will be improved as well. We
will also generalize our notion of context and adaptation towards service contexts and
distributed adaptation scenarios where more than one computing device is involved in
the adaptation process.

Acknowledgement

The work presented in this paper is done as part of the MADAM [16] project funded
by the European Commission under the 6* framework programme. We would like to

www.manaraa.com

96 Kurt Geihs, Mohammad U. Khan, Roland Reichle, Arnor Solberg, Svein Hallsteinsen

express our thankful gratitude towards the MADAM consortium and the commission
for their valuable support.

References

1. Gomaa, H. and M. Hussein (2003), "Dynamic Software Reconfiguration in Software Prod
uct Families", 5th Int. Workshop on Product Family Engineering (PFE), Lecture Notes in
Computer Science, Springer-Verlag.

2. Szyperski, C , "Component Software: Beyond Object-Oriented Programming", Addison
Wesley, 1997 (2nd ed. 2002, ISBN 0-201-74572-0).

3. OMG MDA Homepage: http;//www.omg.org/mda/
4. UML 2.0 Specification: http://www.omg.org/cgi-bin/apps/doc7formal/05-07-04.pdf
5. Kurt Geihs, Mohammad UUah Khan, Roland Reichle, Arnor Solberg, Svein Hallsteinsen,

Simon Merral, "Modeling of Component-based Adaptive Distributed Applications" DADS
Track, The 21st Annual ACM Symposium on Applied Computing, Dijon, France, April 23
-27, 2006

6. Arun Mukhija and Martin Glinz, "The CASA Approach to Autonomic Applications", Pro
ceedings of the 5th IEEE Workshop on Applications and Services in Wireless Networks
(ASWN 2005), Paris, France, June-July 2005.

7. Mark Yarvis, Peter Reiher, Gerald J. Popek, "Conductor: A Framework for Distributed Ad
aptation", Proceedings of the Seventh Workshop on Hot Topics in Operating Systems,
1999.

8. Joseph Loyall, Emerging Trends in Adaptive Middleware and its Application to Distributed
Real-time Embedded Systems. Third International Conference on Embedded Software
(EMSOFT 2003), Philadelphia, Pennsylvania, October 13-15, 2003.

9. Shang-Wen Cheng, An-Cheng Huang, David Garlan, Bradley Schmerl, and Peter Steenki-
ste, "Rainbow: Architecture-Based Self Adaptation with Reusable Infrastructure", IEEE
Computer Vol. 37 Num. 10, October 2004.

10. S. Masoud Sadjadi, Philip K. McKinley, Betty H.C. Cheng, and R.E. Kurt Stirewalt,
"TRAP/J: Transparent generation of adaptable Java programs". In Proceedings of the Inter
national Symposium on Distributed Objects and Applications (DOA'04), Agia Napa, Cy
prus, October 2004.

11. http://www.omg.org/cgi-bin/apps/doc7ptc/04-09-01 ,pdf
12. A. Gavras, M. Belaunde, L. Ferreira Pires, J.P.A. Almeida. "Towards an MDA-based de

velopment methodology for distributed applications." In: Proceedings of the 1st European
Workshop on Model-Driven Architecture with Emphasis on Industrial Applications (MDA-
lA 2004), CTIT Technical Report TR-CTIT-04-12, University of Twente, ISSN 1381-3625,
Enschede, the Netherlands, March 2004, pp. 71-81.

13. http://www.opengroup.org/combine
14. Hallsteinsen, S., Stav, E. and Floch, J., Self-Adaptation for Eveiyday Systems, ACM

SIGSOFT Workshop on Self-Managed Systems (WOSS '04), Newport Beach, CA, USA,
2004.

15. M. C. Hiibscher, J. A. McCann, An adaptive middleware framework for context-aware ap
plications, Personal and Ubiquitous Computing, Vol. 10, No.l, pp. 12-20 (2006).

16. MADAM Project Homepage: http://www.ist-madam.org

www.manaraa.com

A Performance Analysis Infrastructure for
Component-Based System Hosted by Middleware

Yong Zhang, Tao Huang, Jun Wei, Ningjiang Chen

Institute of Software, Chinese Academy of Sciences, Beijing 100080, China
{yzhang, tao, wj, river}@otcaix.iscas.ac.cn

Abstract. An infrastructure is proposed for automatically modeling the impact
of middleware to component-based system at architectural level performance
evaluation. The basic ideas behind infrastructure are separation of performance
modeling concerns between apphcation and middleware, and declarative per
formance modehng manner. Taking container style middleware for example,
the details of proposed infrastructure are illustrated in this paper, which are
well-founded on other existing and proven approaches, such as UML Profile for
Schedulability, Performance and Time (UML SPT profile) and Layered Queue-
ing Network performance model generation techniques. To validate proposed
infrastructure, a case study is conducted.

1 Introduction

Software middleware helps to alleviate complexity associated with developing dis
tributed software, enables separation of concerns between application logic and sys
tem services, such as distributed communication, transaction, message, security, con
currency control, component life cycle management, etc. At the same time,
middleware will obviously impact the architecture and performance of component
application, which must be taken into account for evaluating the performance of com
ponent application from early design specification [1,2,3,4].

At times, middleware as supporting platform is not included as a part of application
design description, performance information of which is missing. In order to accu
rately predict the performance of middleware-based system, some works have been
undertaken [5-10], but these approaches require analyst familiar with middleware in
ternal structure and performance modeling technique itself. The steep learning curve
behind these methods is one of the major impediments to their adoption.

Our viewpoint is that the modeling process for middleware-based system should be
usable in everyday practice by software developer with the help of supporting tool. It
should be necessary to automatically construct platform dependent model directly
from given application model description and deployment platform. Such tools should
be able to read respective model, process it, and produce the composite result suitable
for further analysis.

In this paper we propose an infrastructure to support the process, based on separa
tion of concerns and a kind of declarative performance modeling method. Middle
ware performance concerns are given by platform provider in a matmer suitable for

Please use the foUowing format when citing this chapter:

Zhang, Y, Huang, T., Wei, J., Chen, N., 2006, in IFIP International Federation for Information Processing, Volume 227,
Software Engineering Techniques: Design for Quality, ed K. Sacha, (Boston: Springer), pp. 97-108.

www.manaraa.com

98 Yong Zhang, Tao Huang, Jun Wei, Ningjiang Chen

declarative modeling. In this paper Extensible Markup Language (XML) Schema is
adopted for the purpose. According to predefined Schema, application specific mid
dleware usage and performance information are declared by analyst. Based on pro
posed infrastructure, the information is automatically weaved into design description
of component application. The composite models which include middleware impact
and be suitable for derivation of performance analysis model can be got. Thus, differ
ent performance modeling concerns of application and middleware are dealt with by
different roles in analysis process.

The rest of this paper is organized as follows: a brief survey of related work is
given in Section 2; the general description of proposed infrastructure is shovra in Sec
tion 3; taking a container style middleware for instance, the details of infrastructure
are described in Section 4, and a case study based on container middleware is demon
strated in Section 5. Section 6 gives the conclusions of the work.

2 Related Work

Some works have been conducted to investigate the impact of middleware to per
formance modeling. In [5,6,7], authors model the performance for CORBA-based dis
tributed object system using QN (Queueing Network) / LQN (Layered Queueing
Network) formaUsm. In [8], authors describe a framework for constracting LQN per
formance model based on the modular structure of Application Server and application
components. One of the major drawbacks of these methods is that one must manually
construct the performance model by studying underlying middleware, which requires
analyst to master middleware details and performance modeling method itself.

In [9,10] authors propose a solution based on empirical testing and mathematical
modeling: models describe generic behaviors of application components running on
COTS middleware; parameter values in model are discovered through empirical test
ing. In this solution, incorporating application-specific behavior into the equation is
difficult, and the results from empirical testing cannot be generalized across different
platfoims, which is economically impractical.

In [3,11,12], authors propose applying Model Driven Architecture (MDA) para
digm to analyze the impact of middleware. In [3], authors describe the supporting
middleware as a kind of completion information to application design, and suggest the
use of MDA idea to supplement it. In [11], authors propose using the Model Driven
performance analysis to a distributed middleware based enterprise application devel
oped using EJB. But, neither of [3] and [11] give the concrete transformation details.
In [12], authors propose automatic inclusion of middleware performance attributes
into architectui^al UML software models, and the process is illustrated taking a
CORBA-based system for an example. But the transformation process of [12] lacks
necessary tool supporting. Moreover, only the impacts of distribution communication
are discussed.

www.manaraa.com

A Performance Analysis Infrastructure for Component-Based System 99

3 Overview of Infrastructure

The structure of proposed infrastructure is shown in Figure 1, which includes three
layers. The top layer is application performance concerns description, and the bottom
layer is middleware specific performance concerns, which can be a description library
including different kind of middleware. The middle layer will be responsible for fin
ishing the assembling process of application and middleware concerns.

assembly p
descriptor j

penormance concerns

of application

_ r

i L

-

performance
Profile

application
UML models

parsing
-*

impacting
context

— * •

Instantiating
impacting factor

®
—^ weaving

engine

[® [®

schema

middleware pe

impacting
factors tempi

-formance cone

1
ate

ems

performance
1 Profile

I | j

analyzing
J 1 *•

® composite
UML models

Fig. 1. Structure of proposed infrastructure

In our work we use Unified Modeling Language (UML) as application design
specification, and UML SPT performance profile as performance annotation, which
has been adopted by Object Manage Group. SPT performance profile extends UML
by proving stereotypes and tagged values to represent performance requirements, the
resources used by the system and some behavior parameters, to be applied to certain
UML behavior model [13,14]. To model perfoimance concerns of middleware, per
formance profile is also necessary. Here we use UML SPT profile as performance an
notation for both application layer and middleware layer.

Performance concerns of different middleware are different, which can be de
scribed respectively by platform provider. But a kind of uniform form should be
adopted. We present a kind of description in structured XML file in this paper, and il
lustrate how to use it by container style middleware, by which the information about
impacting factors is organized. According to given XML Schema format of a concrete
platform, application specific middleware usage information can be provided in a
XML file, called assembly descriptor file in our work.

The input of middle layer includes application UML models and application spe
cific assembly descriptor file. According to corresponding XML Schema in middle
ware model library, an XML parser in infi'astructure will parse the assembly descrip
tor. Then, a middleware impacting context is created, which includes concrete
middleware usage and relative performance information. With impacting context, the
predefined impacting factors templates of middleware are instantiated. After that,
weaving engine will analyze application UML models and insert these impacting fac
tor instances into proper position. The output of infrastructure is composite UML

www.manaraa.com

100 Yong Zhang, Tao Huang, Jim Wei, Ningjiang Chen

model including middleware impact, from which performance analysis model can be
derived. In this paper, we use LQN as target formalism, just one of several possible
modeling formalisms [15,2].

4 Modeling for Container Style Middleware

The performance concerns of different type middleware can be different. In this sec
tion we will use container style middleware as an example to illustrate the cores of
proposed infrastructure. Container style middleware is a kind of supporting environ
ment in common use for server-side component technologies, such as Enterprise Java
Beans and CORBA Component Model, which enables separation of concerns be
tween application logic and system services [16]. The components interacting process
based on container middleware can be described as Figure 2.

distributed Communication connection scheduling server side handling

Client
Container

dispatcher

Component

interceptor I

Transport Transport Transaction Security Message Persistence

Fig. 2. Component interacting process based on Container middleware

4.1 Modeling Performance Concerns

As illustration, here only three major impacting factors of container middleware are
considered: distributed communication, server side connection contention and request
processing inside container. We try to build some templates for impacting factors,
which can be instantiated according to specific function requirement. The modeling
follows the UML SPT profile concepts. We will use scenario-based analysis method
[2,13], and scenarios are described by using UML activity diagram with stereotypes
and tagged values armotation defined in SPT profile.

The granularity of a scenario step depends on the level of abstraction chosen by tlie
modeler. If finer granularity is required, a step at one level of abstraction can be re
solved into a corresponding scenario comprising finer-grained scenario steps. More
detailed model which reflects the exact software architecture of middleware, from
which more accurate performance estimate can be derived, on the other hand, the sys
tem model will be more complex. The tradeoff need be considered.

Distributed communication generally bases on client-proxy-server pattern [17].
Client side and server side components (like stub, remote reference, and skeleton
shown in Figure 2) will perform some additional operations on request and response.

www.manaraa.com

A Performance Analysis Infrastructure for Component-Based System 101

such as marshaling and un-marshaling. These operations will incur overhead, the im
pacts of which are modeled in Figure 3. (Here only synchronous call is illustrated).

«PAstep»
{PAdemand=('msrVniean',
Sskeleton_Reply_time,'ms')}

c xindefined)

(^ Stub_ r̂eply~^^
«PAstep»
{PAdemaiid=('msr','mean',
$stub_Reply_time,'ms')}

Fig. 3. Modeling overhead of distribution

Relative middleware components are stereotyped as < < P A r e s o u r c e » , and key
actions impacting performance are stereotyped as « P A s t e p » , which demand can
be tagged with PAdemand. UML SPT profile provides a useful facility supporting
symbolic variables, expressed as $name, as well as values for parameters. Here, the
demand of each step is described using variable, which will be determined according
to application specific model assembly descriptor.

Generally, middleware can process multiple connections concurrently. Here we
suppose container middleware using thread pool model. Calls from different client
connection will execute in different threads. When the number of cUent connections
exceeds the number of available threads, connections will wait in queue for obtaining
thread. The connections can be scheduled based on specific scheduling policy. The
size of thi-ead pool and scheduling policy will impact application performance.

Middleware services to be used during invocation usually are declared in applica
tion deployment descriptor. To add these services to component system dynamically,
architectural pattern similar to chains of interceptor (responsibility) is generally em
ployed in Container middleware [17]. Middleware services serve the request concur
rently under the control of different processes/threads. Triggered services will cause
overheads.

For convenience, the impact of connection contention and cost of middleware ser
vices are modeled in a single UML activity (as shown in Figure 4). The attribute mul
tiplicity, representing the size of thread pool, is described by SPT profile tagged value
PAcapac i ty , and scheduling discipline is described by PAschdPol icy . Each
kind of middleware services is abstracted as a service component described by vari
able $serviceName_i. These variables are placeholders for middleware services that
will be used in specific application. Here we model each service as a whole, instead of

www.manaraa.com

102 Yong Zhang, Tao Huang, Jun Wei, Ningjiang Chen

modeling its internals, service demand of which is represented by variable $ser-
viceiTime.

Container
«PAresource»

PA5chdPolicy=SschdPolicy}

^ ^ connReq

Thread Manager
«PAreSQurce»

{PAcapacity=Scapa}

$serviceName_l
«PAresource»

Fig. 4. Modeling connection contention and server side processing cost

4.2 Organizing Concerns Information in XML

The performance concerns discussed in last section should be provided in a manner
suitable for declarative modeling. In this paper, we use XML file to organize the in
formation, which complies with the habit of application developer using middleware.
At the same time, XML-based description is easily extensible, which provides con
venience for further abstracting other impacting factors and refining current factors.
The Schema of which is shown in Figure 5.

- serverComponem

interactingComponents

— clientComponent

configuration
settings

- muitiplicity

- scheduling discipline - isRemote?

mean_waiting_time

'— invocations ™ lnvocation+

— transitionJD r stub_Req_time

invocationXype - skeleton_Req_time

- skdeton_Reply_time

'- stub_Reply_Time

- serviceType

services Service+

serviceName

host

servingTime

Fig. 5. Schema of model assembly descriptor

The elements in Figure 5 are declared according to each pair of interacting compo
nents that use middleware. Element <configuration settings> provides information
about modeling connection contention, a sub-element of which <mean_waiting_time>
declares the mean waiting time to get a tliread for accepting connection. For each in-

www.manaraa.com

A Performance Analysis Infrastructure for Component-Based System 103

vocation between application components, there is a <invocation> declaration: <tran-
sitionID> represents the transition (described in application UML activity diagram)
referring to this call; element <invocationType> shows that the invocation is synchro
nous or asynchronous; element <isRemote> specifies service demands of distribution
communication phases; Element <services> represents which middleware services
will be used by this invocation, in which the service details are specified.

According to the given Schema, appHcation specific model assembly descriptor
can be constructed, which is one of inputs to infrastructure. The assembly descriptor
provides metadata for assembling component application UML model and middle
ware impacting factors.

4.3 Weaving Engine

From the assembly descriptor file, middleware impacting context that includes appli
cation specific middleware usage and performance information will be created. Using
the information, the middleware impacting factors templates are instantiated. Based
on impacting context, weaving engine will locate the affected invocations in applica
tion UML models, in particular UML activity diagram in this paper, and insert instan
tiated impacting factors into it. During the process, the original call in activity dia
gram can need to redirect. The processing steps are illustrated in Figure 6.

(begin J

± For each pair of interacting application components

Impacting
context

Instantiating distribution commimication impact factor

IE
Instantiating server side impacting with relative information

JZ
Looking for affected call in application UML model

JZ

application
UML model

Changing original call relation

T
Inserting instantiated middleware impacting factors

Fig. 6. The weaving process

In addition, the UML deployment diagram of component application need also be
changed to reflect the allocation of middleware components to hardware devices.

www.manaraa.com

104 Yong Zhang, Tao Huang, Jun Wei, Ningjiang Chen

5 Case Study

To illustrate proposed infrastructure, a case study is conducted, modeling the per
formance of an online store application based on EJB container middleware. The sce
nario can be described as Figure 7: customer component makes a remote synchronous
invocation to bitsinessBean component to find required customer information, which
need middleware security service; then updates email address of customer to data
base, during the process middleware transaction service is needed. We will predict the
response time of updating customer email information at varying number of clients.
Customer and businessBean are implemented as EJB components. The deployment
platform we employed is a J2EE Application Server, called OnceAS [18]. Client ma
chine generates a number of users who repeatedly generate random requests. There is
a think-time distribution that each user uses to determine how long to wait between
requests. We let the number of clients vaiy between 10 and 200 with the increment of
10 clients. The workload is described with PApopu la t ion tagged value. Database
is modeled indirectly by specifying as external resource with UML SPT tagged value
PAextOp, attached to steps that access database, getCustomer and setEmail. The de
tail modeling of database is outside the scope of this paper.

«PAclosedLoad»
{PApopulatioii=SNt)sers}

(Waiting j

cc: customer cus:businessBean

«GRMdeploys»

«GRMdeploys»

ny

:ClientWork
station

iServerWork
station

: Intranet

Fig. 7. UML models of case study

With the help of a profiling toolkit Optimizelt [19], service demands of middleware
are obtained from a prototype implementation of the case. According to the Schema
shown in Figure 5, the model assembly descriptor file of case study is given below.
The file, together with the UML diagrams in Figure 7 (in XML format according to
XMI standard transformation), will be the inputs to infrastructure.

www.manaraa.com

A Performance Analysis Infrastructure for Component-Based System 105

<interactingComponentsclientComponent=customerserverComponent=businessBean>
<configuration settings multiplicity=10 scheduling discipline=FIFO mean_waiting_time=2.8ms/>

<invocations>
<invocation transitionlD=t01 invocationType=synchronous>
<isRemote stub_reqjime=1.5ms sl<eleton_req_time=1.9nns

skeleton_replyJlme=3.4ms stub_replyjime=3.2ms getConn=2.8ms/>
<services>

<service serviceName=SecService serviceType=Security
Host =serverWorl<station servingTime=5.3ms/>

</services>
</invocation>
<invocation transitioniD=t2 invocationType=synctironous>
<isRemote stub_req_time=2.1ms skeleton_reqJime=2.5ms

skeleton_replyJime=3.3msstub_replyJime=2.8ms/>
<services>

<service serviceName=TxService serviceType=Transaction
Host =serverWorkstation servingTime=19.5ms/>

</services>
</invocation>

</invocations>
</interactingComponents>

«PAcontext»

Fig. 8. Composite UML activity diagram amiotated witli performance information

www.manaraa.com

106 Yong Zhang, Tao Huang, Jun Wei, Ningjiang Chen

:customer

su
:Stub

sk
: Skeleton

en
:Contamer

thMan:tlire
adManager

sec
;seoService

«GRMdeploys»

:ClientWorkstation

tx
:TXService

cus:busmess
Bean

«GRMdeploys»

:ServerWorkstation

:Intranet

Fig. 9. Composite deployment diagram

By weaving engine, the composite UML models are obtained, as shown in Figure 8
and Figure 9, including activity diagram and deployment diagi-am. For the sake of
clarity, the performance information of application components is not shown in fig
ures.

Using the method proposed in [20], the LQN performance model is obtained from
Figures 8 and 9, which can be solved with the model solving tools provided in [21].
For space limitation, the resulting LQN performance model is omitted here. Perform
ance estimates of the resulting LQN model are extracted for varying parameters. To
validate the prediction results, we conducted measurements with our benchmark im
plementation. The comparison of predictions and measurements are shown in Figure
10. Two group data are given under different configuration settings with different size
of thread pool: Configuration A has 10 threads, and configiu-ation B has 30 threads.

Measurment_A
Measurmsnt B

200 -

No. of clients

Fig. 10. Comparison of predictions and measurements

The prediction differences shown in Figure 10 are about 12% and 10% under two
different configurations respectively. This comparison demonstrates the validity of
proposed approach. At the same time, the differences also illustrate that the impacting
factors of container middleware can be further extended and refined, such as, the im
pact of component instantiating, database connection contention, etc. Their aggregate
impact may explain the differences.

www.manaraa.com

A Performance Analysis Infrastructure for Component-Based System 107

6 Conclusion

In this paper we propose an infrastructure supporting automatically modeling the
middleware performance impact to component-based system. Taking container style
middleware as an example, the cores of proposed infrastructure are illustrated. The
ideas behind this are separation of performance modeling concerns between applica
tion and middleware, and declarative performance modeling manner. We suggest the
performance concerns of middleware be provided in a manner of suitable for declara
tive modeUng by platform provider. In this paper, major performance impact factors
of container middleware are abstracted, and modeled following the UML SPT con
cepts. Through a model assembly descriptor file, the model weaving engine is respon
sible for assembling the performance impacting factors into component application
UML model. The prototype of proposed infrastructure has been realized. Using a case
study, we validate proposed method.

In the future, several aspects of studying will be conducted. Firstly, we plan to con
tinue to refine and abstract other performance impacting factors of container middle
ware that are not considered currently, such as more precise thread pool mechanism,
instance pool mechanism, database connection contention, and component persis
tence mechanism, etc. Next, we will improve the abstraction level of middleware im
pacting factors description. We will try to build UML profile for middleware impact
ing factors which can be applied to application UML models directly, by using the
standard extension mechanism provided by UML [22]. In addition, we will extend
middleware concerns library using other type middleware platform, based on the
analysis to an open source CORBA middleware project.

References

L Wolfgang Emmerich: Software engineering and middleware: a roadmap. In: Proceedings of
the 22nd International Conference on Software Engineering, on the Future of Software
Engineering. ACM, New York, NY(2000) 117-129

2. Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, Marta Simeoni: Model-Based
Performance Prediction in Software Development: A Survey. IEEE Transactions on Soft
ware Engineering. Vol.30, No.5, May (2004) 295 - 310

3. M. Woodside, Petriu, D., Khalid Siddiqui: Performance-related Completions for Software
Specifications. In: Proceedings of the 24* International Conference on Software Engineer
ing. ACM, New York, NY (2002)22-32

4. Pooley, R., Software engineering and performance: A road-map. In: Proceedings of the
22nd International Conference on Software Engineering, on the Future of Software Engi
neering. ACM, New York, NY (2000) 189-200

5. KahkipurOjP.: Performance Modeling Framework for CORBA Based Distributed Systems,
PhD thesis. Department of Computer Science, University of Helsinki (2000)

6. Petriu, D., Amer, H., Majumdar, S., Abdull-Fatah, I.: Using analytic models for predicting
middleware performance. In: Proceedings of the Second International Workshop on Soft
ware and Performance WOSP2000.ACM, New York, NY (2000) 189-194.

7. WiUiams, L.G., Smith, C.U.: Performance Engineering Models of CORBA-Based Distrib-
uted-Object Systems. In: Proceedings of International CMG Conference, Computer Meas
urement Group (1998) 886-898

www.manaraa.com

108 Yong Zhang, Tao Huang, Jun Wei, Ningjiang Chen

8. Jing Xu, A. Oufimtsev, M. Woodside, L. Muiphy: Performance Modeling and Prediction of
Enterprise JavaBeans with Layered Queuing Network Templates. In: Proceedings of Work
shop on Specification and Verification of Component-Based Systems, ACM, New York,
NY (2005)

9. Liu, Y., Fekete, A., and Gorton, I.: Design-Level Performance Prediction of Component-
Based Applications. IEEE Transactions on Software Engineering, Vol.31, No.ll, Novem
ber (2005) 928-941

10. S. Chen, Y. Liu, I. Gorton, and A. Liu: Performance Prediction of Component-Based Appli
cations. J. Systems and Software. Vol. 74, No. 1, January (2005) 35-43

11. James Skene and Wolfgang Emmerich, Model Driven Performance Analysis of Enterprise
Information System, Electronic Notes in Theoretical Computer Science 82 No.6,
2003.URL: http://www.elsevier.nl/locate/entcs/volume82.html

12. Tom Verdickt, Bart Dhoedt, Frank Gielen,and Piet Demeester, Automatic Inclusion of Mid
dleware Performance Attributes into Architectural UML Software Models. IEEE Transac
tions on Software Engineering. Vol. 31, No.8, August (2005) 695-711.

13. Object Management Group, UML Profile for Schedulability, Performance, and Time, vl . l ,
2005.

14. C.M.Woodside and D.C. Petriu, Capabilities of the UML Profile for Schedulability Per
formance and Time, In Workshop SIVOES-SPT held in conjunction with the 10th IEEE
RTAS'2004.

15. M. Woodside, Tutorial Introduction to Layered Modeling of Software Perforaiance, Edition
3.0, http://www.sce.carleton.ca/rads/lqn/lqn-documentation/tutorialg.pdf, Carleton Univer
sity ,2002

16. Ward-Dutton, N: Containers: A Sign Components are Growing Up. Application Develop
ment Trends. January (2000) 41-46

17. Douglas Schmidt, Michael Stal, Hans Rohnert, Frank Buschmann, Pattem-Oriented Soft
ware Architecture, Volume 2, Patterns for Concurrent and Networked Objects. John Wiley
& Sons, New York, NY (2000).

18. http://www.once.com.cn
19. http://www.borland.com/us/products/optimizeit/
20. D.C. Petriu and H. Shen: Applying the UML Performance Profile: Graph Grammar-Based

Derivation of LQN Models from UML Specifications. In: Proceedings of 12* International
Conference Computer Performance Evaluation, Modeling Techniques and Tools, LNCS
2324, Springer-Verlag, Berlin (2002)159-177.

21.Franks,G.,Hubbard,A.,Majumdar,S.,Petriu,D.C.,Rolia,J.,Woodside,C.M: A toolset for Per
formance Engineering and Software Design of Client-Server Systems. Performance Evalua
tion, Vol.24, No.1-2, February (1995)117-135

22. Object Management Group, Unified Modeling Language Specification, Version 1.4.2,
http://www.omg.org/docs/formal/04-07-02.pdf

www.manaraa.com

Estimation of mean response time of multi-agent systems

Tomasz Babczyriski and Jan Magott

Institute of Computer Engineering, Control and Robotics
Wroclaw University of Technology
Tomasz.Babczynski @ pwr.wroc.pl

Abstract. The following analytical approaches: queuing network models,
stochastic automata networks, stochastic timed Petri nets, stochastic process
algebra, Markov chains can be used in performance evaluation of multi-agent
systems. In this paper, new approach which is based on PERT networks is
presented. This approach is applied in performance evaluation of layered
multi-agent system. Time-out mechanisms are used in conimunication between
agents. Our method is based on approximation using Erlang distribution. Accuracy
of our approximation method is verified using simulation experiments.

1 Introduction

In this paper, an analytical approach, which is based on stochastic PERT networks, is
developed. The approach is applied in performance evaluation of layered multi-agent
system. These layers are associated with the following types of agents: manager, bidder,
and searcher ones. Our method is based on approximation using Erlang distribution.
Erlang distribution is one of probability distributions that are used in evaluation of
completion times in stochastic PERT networks. In the paper [4], an approximation
method which is based on Erlang distribution has been applied for the above layered
multi-agent system. In this paper, there was no bounds for time of waiting for messages
from the agents. In present paper, time-out mechanisms are used in communication
between the agents. Accuracy of our approximation method is verified using simulator.
This simulator has been previously used in simulation experiments with the following
multi-agent systems: personalized information system [1], industrial system [2], system
with static agents and system with mobile agent [3], These systems have been expressed
in standard FIPA [5] which the JADE technology [6] is complied with.

In section 2, the multi-agent system is described. Then our approximation method is
presented. In section 4, accuracy of our approximation method is verified by comparison
with simulation results. Finally, there are conclusions.

2 Layered multi-agent system

We consider layered multi-agent information retrieval (MAS) system given at Fig. 1.
The MAS includes: one manager type agent (MTA) as Fat Agent, two bidder type

agents(firA.s) as Thin Agents, Searcher type agents (STAs) as Thin Agents. One BTA
co-operates with a number of STAs.

Please use the following format when citing this chapter:

Babczynski, T., Magott, J., 2006, in IFIP Ihtemational Federation for Information Processing, Volume 227, Software
Engineering Techniques: Design for Quality, ed. K. Sacha, (Boston: Springer), pp. 109-113.

www.manaraa.com

no Tomasz Babczynski, Jan Magott

N
Fig. 1. Layered multi-agent information retrieval system

After receiving a request from an user, the MTA sends messages to the BTAs in
order to inform them about the user request. Then the timer of the MTA is started, and
the MTA is waiting for two responses from the BTAs. The waiting time is limited by the
termination time tm. Having two responses from the BTAs, the MTA prepares the response
for the user. If the maximal waiting time tm has elapsed then the MTA prepares the
response for the user having information received from the BTAs until the tm has elapsed.

After receiving a request from the MTA, the BTA sends messages to all STAs
co-operating with this BTA. Then the timer of the BTA is started, and the BTA is
waiting for responses from all its STAs but no longer than the termination time tb.
Having responses from the STAs, the BTA prepares the response for the MTA. If the
maximal waiting time tb has been elapsed then the BTA prepares the response for the
MTA having information received from the STAs until the tb has elapsed.

The STA prepares the response by searching in Data Base {DB). Each STA is
associated with one DB. The probability of finding the response in the DB is denoted
by f_rate. Time unit is second, and it will be omitted. Searching time is expressed by
uniform distribution over the time interval [0,6). Hence, the expected searching time,
provided there is the required information in the DB, is equal to 6/2. Searching time is
equal to b with the probability 1 — fjrate.

Message transmition times between the MTA and the BTA, and between the BTA
and the STA are given by n stage Erlang distributions with parameter A for each stage.

3 Erlang distribution based approximation method

We will explain how the expected value of time of receiving of a response by the
user is approximated. Because of the lack of space some derivations will be omitted.
Probability distributions of times are approximated by Erlang ones [7].

Random variable (RV) with this distribution will be denoted by En,\. This RV
can be interpreted as a sum of n RVs with exponential distribution and each with
parameter A. Expected value and variance for this RV are equal to E{En,\) — n/X and
Var{En^x) = n/\^, respectively. For the RV T, the squared coetRcient of variation
iSCV) of the T is defined by the formula:

SCV{T) = Var{T)/E{Tf where: E{T) is the expected value of T, Var{T) is
the variance of T. The SCV for the K . A is equal to SCV{Er,,x) = l/n.

The RV of the STA searching time in the DB will be denoted by Ubjjrate- This RV
has the probability density function:

www.manaraa.com

Estimation of mean response time of multi-agent systems Hi

M,/_™teW= <

fjrate -l/b forte [0,

(1 - f_rate) • 6{t - b) for t = &

0 otherwise

Expected value, variance, and ^CF for this i?y can be found in [4].
Let us consider the approximation of the probabiHty distribution of the RV X of the

length of the time interval between the time instant when the BTA sends the request to
given STA and the time instant when the BTA receives the response from this STA.
This RV is given by the expression: X = En,x + Ubj_rate + En,x. We suppose that
RVs of transmission times between agents and RVs of searching processes in the DBs
are independent. The formulae for expected value, variance, and SCV of RV X can be
found in [4].

For multi-agent system described in section 2, the RVs of transmission times
between agents are two stage Erlang distributions with parameter A = 1 for each stage,
and will be denoted by i52,i.

The RV X is approximated by the RV E„^\ , and with the SCV = 1/n such that
\SCV{X) — l /n | is minimal. The expected values of the RVs X and En,x are equal.
Hence, the parameter A is selected according to the equality A = n/E{X).

Let m be the number of STAs associated with one BTA. Let En,x{i) be such a RV
En,x that approximates the length of the time interval between the time instant when
the BTA sends the request to i*^ STA and the time instant when the BTA receives the
response from this STA. In this case, the RV Y of the BTA waiting time for all responses
from STAs is Y" = max,jg{î .,,_m} En^x{i)- The cumulated distribution function of the
RV y is given by the expression: -Fy(t) = (-F^B .̂A (*))"• The k*^ moment (noncentral)
of the RV Y is obtained by numeric integration of the following formula:

/"OO

/zW(F) = fc / t'^-^ {l-FY{t))dt
Jo

Then the RV Y is approximated by RV EnY,\Y i'̂ ĥe same way as the ^VX has been
approximated by the RV En^x-

Now, let us suppose that the BTA waits for the responses from the m STAs not
longer than for the termination time tb. Therefore, we analyse the RV Eny.Xy truncated
in the tb. This RV will be denoted by W. The CDF and the fe-th moment'of the RV W
are given by the expressions:

'O f o r t < 0

F'w{t) fovO <t<tb
1 otherwise

7 {ny + 1, Ay t) + AK"^i"'^e-^^ *
(1)

(fe) ^ 7 {ny + k,XY- tb) tb^r{ny,\yth)

^'"^ (ny-l)!Ay'= {ny-iy.

EW) = uLV: Var(W) = ulJ) - (u\}))^

www.manaraa.com

112 Tomasz Babczynski, Jan Magott

The RV W is not approximated. The RV of the length of the time interval between the time
instant when the MTA sends the request to given BTA and the time instant when the MTA
receives the response from this BTA is approximated by the RV: Z = i?2,i +W + £'2,1-

The expected value of time of receiving of a response by the MTA (or user), i.e.
response time, is approximated in the similar way as the expected value of the RY Y
has been approximated.

4 Accuracy of the approximation method

In order to evaluate the accuracy of the approximation method, the simulation for: the
MAS containing m STAs for each BTA, where m = 3, 10, have been performed. For each
MAS, the following values of fjrate = 0.1, 0.3, 0.6, and 0.9 have been considered.
The transmission time between agents is given by RV E2,i. Hence, the mean transmission
time between the agents is equal to E(i?2,i) = 2. In table 1, the percentage errors of

Tab. 1. Percentage errors of mean response time

b

16

32

32

tb

20

38

380

tni

27

45

450

3
10
3

10
3

10

0.1

0.7%
1.4%
0.5%
0.9%

17.2%
28.2%

0.3

-0 .4%
1.3%

-0 .7%
0.7%

11.9%
22.3%

0.6

-2 .5%
0.7%

- 3 . 1 %
0.6%
9.8%

24.6%

0.9

-2 .6%
- 0 . 1 %
-2 .5%

1.0%
7.6%

21.0%

mean response time for choosen values of b, tb and tm are given. In the case when the
maximal searching time 6 = 16 and the termination times tb = 20, tm = 27, we have
b/E{E2,i) = 8. The approximation results are very good, errors are below 3%. When
the maximal searching time 6 = 32 and the termination times tb = 38, tm = 45, then
h/E{E2,i) = 16. Even in this case, when the uniform distribution of RV of searching
time is strongly dominating the Erlang distribution of RV of transmission times, the
Erlang distribution based approximation is very good. In the third group of results the
maximal searching time b = 32, the termination times tb — 380, tm = 450. In this
case, hjE (£2,1) = 16. Now, the approximation errors are much greater than previously.
However, it is not realistic choice of parameters, because the termination time tb is more
than 10 times greater than the mean time of the RV X = £'2,1 + Vz2,f_rate + £2,1-

5 Conclusions

In the approximation method, the RV with n stage Erlang distribution is used. It has
been obtained from the simulation, that the sum of the 7?y of the Erlang distribution
(representing the transmission time) and the RV of searching time with uniform
distribution can be approximated by the other W of Erlang distribution with suitable
number of stages.

www.manaraa.com

Estimation of mean response time of multi-agent systems 113

Many multi-agent systems have layered structure with the following agents: client
assistant, brokers, execution agents. The presented performance approximation method
can be used for finding the mean time of response on client request for this class of
systems. In the future, we will try to get a better approximation using the general phase
type distribution instead of the Erlang one.

References

1. T. Babczyiiski, Z. Kruczkiewicz, J. Magott, Performance evaluation of multiagent personalized
information system, in: Proc. 7th Int. Conf Artificial Intelligence and Soft Computing -
ICAISC, Zakopane, 2004, Lecture Notes in Computer Science / Lecture Notes in Artificial
Intelligence (LNCS/LNAI), Springer-Verlag, Vol. 3070, 810-815.

2. T. Babczynski, Z. Kruczkiewicz, J. Magott, Performance analysis of multiagent industrial
system, in: Proc. 8th Int. Workshop Cooperative Information Agents - CIA, Erfurth, 2004,
LNCS/LNAI, Springer-Verlag, Vol. 3191, 242-256.

3. T. Babczyiiski, Z. Kruczkiewicz, J. Magott, Performance comparison of multiagent systems,
in: Proc. Central and Eastern European Conference on Multiagent Systems - CEEMAS,
2005, LNCS/LNAI, Springer-Verlag, Vol. 3690, 612-615.

4. T. Babczyiiski, J. Magott, PERT based approach to performance analysis of multi-agent
systems, in: Proc. International Conference of Artificial Inteligence and Soft Computing -
ICAISC, 2006, LNAI, Springer-Veriag, Vol. 4029,1040-1049

5. Foundation for Intelligent Physical Agents, http://www.fipa.org/specs/
6. JADE, http://jade.tilab.com/
7. MathWorld, Wolfram Research, Inc.,

http://mafliworld.wolfram.com/ErlangDistribution.html,
http://mathworld.wolfram.coin/topics/GammaFunctions.html.

www.manaraa.com

Integrated Approach to Modelling and Analysis
using RTCP-nets*

Marcin Szpyrka-̂ and Tomasz Szmuc^

Institute of Automatics,
AGH University of Science and Technology,
Al. Mickiewicza 30, 30-059 Krakdw, Poland

mszpyrka@agh.edu.pl, tsz@agh.edu.pl

Abstract. RTCP-nets are a subclass of coloured Petri nets formed in order to
support specification, design, validation, and verification of embedded systems.
The advantages of the nets are directly visible in rapid modelling of the so-called
rule-based control systems that are widely applied. A method of embedded systems'
modelling based on RTCP-nets has been presented in the paper. The formalism
is supported by software tool called Adder. This tool provides an integrated
environment supporting formal specification and design of embedded systems.

1 Introduction

Correctness of a real time system is a difficult task due to a high concurrency level and
additional time requirements [1]. These features cause, that applications of formal
modelling and verification of such systems could be reasonable, especially when the use
of these methods is supported by the corresponding software tools. A wide class of real
time systems perform on the basis of a set of rules, which are used to compute outputs
in response to current state of inputs that are monitored in such system environment.
This set of rules specified in the analysis phase as functional requirements may be
formally described, and then incorporated into the system model.

A large number of formalisms has been proposed for real-time systems ([1], [2]),
e.g. process algebras, Petri nets, temporal\real-time logics, timed automata. Petri nets
are one of the most widespread formal methods used in software engineering. The
presented approach is based on a subclass of coloured Petri nets (CP-nets [3]), the
so-called RTCP-nets. RTCP-nets ([6]) are an adaptation of CP-nets in order to make
modelling and verification of real-time systems' easier and more efficient. The main
features of RTCP-nets in comparison to timed CP-nets are presented below.

- A priority value is attached to each transition.
- A set of arcs is defined as a relation (multiple arcs are not allowed). Two expressions

are attached to each arc: a weight expression and a time expression. For any arc,
each evaluation of the arc weight expression must yield a single token belonging to
the corresponding type (colour); and each evaluation of the arc time expression
must yield a non-negative rational value.

Research supported from a KBN Research Project No.: 4 TllC 035 24

Please use the following formatM'hen citing this chapter:

Szpyrka, M., Szmuc, T., 2006, in IFIP International Federation for Information Processing, Volume 227, Software Engi
neering Techniques: Design for Quality, ed K. Sacha, (Boston: Springer), pp. 115-120.

www.manaraa.com

116 Marcin Szpyrka, Tomasz Szmitc

- Time stamps are attached to places instead of tokens. Any positive value of a time
stamp describes how long a token in the corresponding place will be inaccessible
for any transition. It is possible to specify how old a token should be so that
a transition may consume it.

Hierarchical RTCP-nets are based on the construct used for hierarchical CP-nets.
Substitution transitions and fusion places ([3]) are used to combine pages but they are
a mere designing convenience. A special canonical form of hierarchical RTCP-nets has
been defined to speed up and facilitate drawing of the models ([6]). RTCP-nets in
canonical form are composed of four types of subnets with precisely defined structures:
Primary place pages are used to represent active objects (i.e. objects performing
actions) and thek activities. Primary transition pages are oriented towards activities'
presentation and are second level pages. Linking pages belong to the functional level of a
model. They are used (if necessary) to represent an algorithm that describes an activity
in detail. Moreover, a linking page is used as an interface for gluing the corresponding
D-net into a model. D-nets are used to represent rule-based systems in the Petri net form.

CASE tools for RTCP-nets called Adder Tools are being developed at AGH
University of Science and Technology in Krakow. The tools are a free software covered
by the GNU Library General Public License. It has been implemented in the GNU/Linux
environment by the use of the Qt Open Source Edition. The software can be compiled
and run in Mac OS X or Windows systems. Adder Tools contain: Designer - for design
and verification of rule-based systems, Editor - for design of RTCP-nets, and Simulator
- for simulation of RTCP-nets. Adder Tools home page, hosting information about
current status of the project, is located at http://adderia.agh.edu.pl.

2 System design process

This paper presents a development process, based on RTCP-nets, that can be used for
modelling of real-time embedded systems. A general scheme of RTCP-nets design
process is illustrated in Fig. 1. The approach is consistent with general rules of object
system development but some elements of structural modelling have been additionally
included. The main stages of RTCP-nets design process are given bellow.

1. The first stage consists of system requirements' definition and verification. For
the considered control systems, requirements are usually described by the use of
decision tables (see [7]).

2. System decomposition is the first step of a model development. It starts with
distinguishing objects that constitute the system and with defining attributes that
describe their features. Objects are divided into active and passive ones. Construction
of primary place pages for active objects ends this development stage.

3. The next stage deals with description of model dynamic that is especially important
for reactive systems. Primary transition pages are constructed at this stage. After
completion of this stage, RTCP-net represents all elements (objects) that constitute
the modelled system and all its activities.

4. The last stage is related to development of functional aspects of the system. Linking
pages and D-nets (if necessary) are used for this purpose.

www.manaraa.com

Integrated Approach to Modelling and Analysis using RTCP-nets 117

Specification of requirements Verification witli D-nets

DESC3UPTI0N
OF SYSTEIM
FUNCTIONAL LEVEL

Fig. 1. The RTCP-net development process model

3 Case study

Let consider an office heating/air conditioning control system. A driver turns a heater and
an air conditioner on/off to keep the office temperature between T - 2°C and T + 2°C,
where T is the required temperature. T is set depending on the particular day {D),
month (M), and hour {H). All relationships between these attributes are represented in
the form of a rule-based system presented in Fig. 2 (the table is based on the example
presented in [4]). D, M, and H are conditional, while T is a decision attribute. Each
row of the table represents a generalized decision rule ([7]). For example, the first rule
means: If it is any day of the week, the month is: December or January or February,
and the time is before 9 or after 17, then the required temperature is equal to 14°C.

Any rule-based system is useful when it satisfies certain formal requirements.
For intuition, a decision table is considered to be complete if for any possible input
situation at least one rule can produce a decision. A decision table is deterministic if
no two different rules can produce different results for the same input situation. The
last property means that any dependent (non-necessary) rules were removed. Adder
Designer enables users to verify a decision table properties automatically.

Design of an RTCP-net starts with distinguishing objects that constitute the modelled
system. Any object is represented by a place. For each object, a list of its attributes
and their types are defined. The Cartesian product of the defined types specifies the
corresponding place type. The following active objects can be distinguished in the

www.manaraa.com

118 Marcin Szpyrka, Tomasz Szmitc

a €,m • ' <.- rj e r "S. a- D

t Annbtitt; Domiiin

D with monltueii\e
v^ithian}fpb!mar|
imwithO 2i
imwtth-S 35

e D e M
1 D liM=dec! ur AU\av>) of ^ivl=jeb)
2 (DosaOatKJ (Dt>sun) (M=dec) oi tM=jan}or (M=feb)
^ tD=sal) 01 (0-suni tM-d^cj oi iM=jaiJ or (M=febi
4 D iM=mar) Of (M=apr) of (M=may)
5 (D<>';fll)?itKi cDostin) (Iv!=tnrlQf (M=apr)of CM=fi>ai')
6 CD=5ati Of (D^'iuii) (M=ftiarJ Of (M=apr3 or fM=may)
7̂ D (M=|un)or iM=jtii)or(M=aug)

^ (D'>sat) and (Dosun) (M=jun)of lN?=juf)or(M=aug)
9̂ (D=sat) or sD=suni fM-junl or fM=jiJl) or {M=au9)
10 D (M=spp) Of tM=octj or {M=no"f
11 (Dosatjafir i (Do^uti) (M=spp^orfM=ocfi or(M=tiovf
1^ (D=5ati Of (D=stJt̂) (M=sep' or (M=oct) or (M=tiov)
I J

, H/AC Sybfem

;H
](H.9)or(H-17)
(H>="J)and(H<=M
H
(H.-9Sor(H>17)
(H^=.9land(H^=17)
H
(H I)) or (H^ 17)
(H>=9)ar>d(H^=.17)
H
(H.-<»or(H*17)
{H>=9land(H. i !7)
H

' Nolt-overed sEafeb ^
Not found
Tv-\Wefs coftipietG
- Notconsistfnt sf?ts ofriitt";
Not fouiKl
Tabtp IS consistent

' DepertdPtit rules
Mid found
Tabte is seiti! opEiPiaf

Fig. 2. Example of Adder Designer session

considered system: Driver, AirCond, Heater, Sensor, Office. The last object represents
the system environment. Examples of definitions of some colours (types) are as follows:
color Temperature = int with -5..35;
color Temperature2 = with normal — heat — cold;
color State2 = with ok — failure;
color DriverState = product Temperature2 * State2;

Primary place pages are used to represent active objects. Any such page is composed
of one place representing the object and one transition for each object activity. Such
a page for the Driver is presented in Fig. 3 a). Other primary place pages are designed
in a similar way. Transitions placed on primary place pages are usually substitution
ones. For each of them a primary transition page is drawn. Such a page contains all the
places, the values of which are necessary to execute the activity. A primary transition
page for the Measurement activity is shown in Fig. 3 b). The place Timerl is used to
guarantee, that the temperature will be measured every 15 seconds. If expressions of
arcs surrounding such a transition are not enough to describe the activity, a linking
page (and D-net if necessary) must be constructed. D-net form of the decision table
presented in Fig. 2 is shown in Fig. 3 c). To include such a D-net into the model
a linking page should be constructed. Such a page is used to gather all necessary
information for the D-net and to distribute the results of the D-net activity. Connections
among all pages are represented by the use of a page hierarchy graph (see Fig. 4).

www.manaraa.com

Integrated Approach to Modelling and Analysis using RTCP-nets 119

Ijl/Put \-—-^ (20)
Temperature

(m,d,h)

(m,dji)

[d o sut and d o sun and h >= 9 and b <= 1?
and (m = mar or m =» apr or m - may)]

R6
15

[(d - sut or d = sun) and (m - mar or m = apr or m = may)]

(m,d,h) I 1 27
R7

Temperature

Output

£(h < 9 or h > 17) and (m = jun or m = Jul or m = aug)]

Fig. 3. a) Driver primary place page, b) Measurement primary transition page, c) Part of D-net

File Edit Mel ^lingment lool*^ jHelp

S B U '''''') ^ ^ ^ n Q fe -̂ J « * £^ *

Reading ̂

TutnOffHeatmg

Messuremcnl

Cooling

McosuremcRtMi

Cooling^U

Heating;?! 5

Properly Value

Name Dnvur
i Nut̂ iber 1
^Parametefs
,wrdth 150
Heiqht 30

•..a^^Md^^iiXM,^
\yschm\(}rA ^^ ^HiGiarchyj OrjyeF ^ Readmg | TMrnQrtAjfCyicJ ^ TumOffAifCofld ^petgctFatt»re TufnOnHeating ;

Fig. 4. Example of Adder Editor session

4 Model verification

Verification of RTCP-nets may be carried out in two ways. First of all, simulation is
used to check how a model works. Adder Simulator supports both interactive and
automatic simulation of an RTCP-net. The tool generates a textual renort.

www.manaraa.com

120 Marcin Szpyrka, Tomasz Szmuc

Formal verification of RTCP-nets is based on coverability graphs. Two states are
considered to cover each other, if both have the same markings and the same level of
tokens accessibihly, i.e. in both states, for each place the tokens are already accessible
or we have to wait the same number of time units to remove them. A coverability
relation is defined on the set of all states and the coverability graph contains only one
node for each equivalence class of the relation. If the set of reachable markings of
an RTCP-net is finite and each type is finite, then it is possible to construct a finite
coverability graph representing the set of all reachable states regardless of the fact the
set is finite or infinite ([5]). The coverability graph for an RTCP-net provides similar
capabihties of analysis of the net properties as the full reachability graph. For example,
the following conclusions are resulted from the graph analysis:

- The heater and air conditioner never work at the same time.
- The heater never works if the temperature is heat.
- The air conditioner never works if the temperature is cold.
- If the temperature changes from heat to normal, the air conditioner is immediately

turned off.
- The air conditioner (heater) works at least 30 s and can work incessantly.

5 Summary

A proposal of a method for real-time systems modelling has been presented in the
paper. It uses two subclasses of CP-nets - D-nets and RTCP-nets. D-nets are used for
the formal definition and verification of system specification, and then are built into
system model in the design phase. RTCP-nets are used as the modelling language in
the design phase. The presented approach is supported by the so-called Adder Tools.
The two kinds of Petri nets and the related tools constitute basis for the proposed
method for development of real-time systems.

References

1. Cheng A. M. K. Real-time Systems. Scheduling, Analysis, and Verification. Wiley Interscience,
New Jersey, 2002.

2. Heitmeyer, C, Mandrioli, D. (Eds.) Formal Methods for Real-Time Computing. Jonh Wiley &
Sons, Chichester, 1996.

3. Jensen K. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use, volume
1-3. Springer-Veriag, 1992-1997.

4. Lig^za A. Logical Foundations of Rule-Based Systems. Springer-Verlag, Berlin, 2006.
5. Szpyrka M. Analysis of RTCP-nets with reachability graphs. Fundamenta Informaticae, 2006

(to appear).
6. Szpyrka M. Fast and flexible modelling of real-time systems with RTCP-nets. Computer

Science, 6:81-94, 2004,
7. Szpyrka M., Szmuc T. D-nets - Petri net form of rule-based systems. Foundations of

Computing and Decision Sciences, 31(2):157-167, 2006.

www.manaraa.com

Hybrid modeling and verification of Java based software

Komad Kutakowskit

Institute of Automatics,
AGH University of Science and Technology
Al. Mickiewicza 30, 30-059 Cracow, Poland

Abstract. From the very beginning, notions such as bisimulation and formal
methods like temporal logic HML or mu-Calculs were closely connected with
process algebra CCS. Another formal method that is widely used for similar
purposes is Petri nets formalism. The presented paper shows how the model
given in the form of a Petri net could be transformed into an equivalent algebraic
model. Some practical application of this method to the analysis of Java based
software wiU be discussed.

1 Introduction

A typical software life-cycle proceeds from the phase of gathering requirements and
forming specification to building and delivering a ready-to-use product. Usually it
consists of several subsequent steps or phases in which a more and more detailed model
of tlie system is built [1]. In this approach, it is useful to have a method of comparing
the initial specification of the system with another (maybe more detailed) specification.
One of the formal methods which can be used for this purpose is bisimulation [2],

The hybrid approach to software modeling and verification proposed in this paper
is based on labelled Petri nets (LPN) and process algebra CCS. It shifts consideration
about the model correctness from labelled Petri nets to the process algebra CCS. This
allows for verification of the correctness of Petri nets by means of native algebraic
mechanisms and notions. The shift is done by defining simple mapping between both
formalisms. This approach does not need a compositional net semantics [3].
Correctness is understood as a relation of satisfying the specification by the given
model [4]. Specification could be given in the form of Petri net, and in this case, we
would say that the model satisfies the specification if both the LPN representing model
and LPN representing specification are bisimilar. Bisimlarity checking is done in CCS. In
order to do so, both Petri nets will be transformed into corresponding agent expressions.
Specification could also be defined in the form of temporal logic formulas [5,6]. The
presented hybrid approach might also be useful for analysing Java software. In this
paper, a sample program based on CyclicBarrier will be analysed in the context of the
hybrid approach based on Petri nets and process algebra CCS.

t Author was partially supported by MNiSW under grant 4 TllC 035 24

Please use the foUmring format when citing this chapter:

Kulakowski, K., 2006, in IFIP International Federation for Information Processing, Volume 227, Software Engineering
Techniques: Design for Quality, ed. K. Sacha, (Boston: Springer), pp. 121-126.

www.manaraa.com

122 Konrad Kulakowski

2 Preliminary notions

Definicja 1. Labelled Petri Net (Labelled Place-Transition net) is a tuple
N = {P, T, F, K,W,L, Mo) satisfying the following conditions:

- P is a finite, nonempty set of places.
- T is a finite, nonempty set of transitions.
- F C (P xT) U (T X P) is a set of directed arcs of the net known as a flow relation.
- K:P—>-N U {ooj is a function assigning a positive integer to every place. The

value K{p), where p G P, indicates the maximum number of tokens that can be
held by p. If p = oo, this means that the maximum number of tokens is unlimited.

- W:F—>N U {0} is a function denoting the weight of each arc.
- MQ.-P—s-N U {0} is a function denoting an initial marking of the net.
- L : T—>ActiPT is a labelling function which maps transitions to elements of

a finite set of ACLLPT with a distinguished element r.

In the LPT net, an occurrence of transition t^e T, and in consequence, marking the
change from M to M , will be denoted M —^ M , or M[ti)M . For every
&e ACILPTM - ^ M'means that M - ^ M ' , such as L(ti) = a. The net
is called finite if Vp e P K{p) ^ oo.

Definicja 2. A reachability graph of the Petri net N = [P,T, F, K, W, L, MQ) is a
pair G = {V, A) over T, where:

- V = [Mo) is a set of vertices,
- T - is a set of transitions ,
- A^ {{M, t, M') : M, M' e [Mo) A M[t)M') is a set of arcs labelled by the

names of transitions such that (M, i, Af) e A if execution oft cause a change of
marking from M to M'.

The notion of bisimulation was originally defined for process algebra CCS [7], and
it also could be easily defined for Petri nets [8]. In both formalisms, bisimulation
is defined over the space of states of a system. In CCS there is a set of all possible
derivatives of the given agent, whilst in the Petri net, this is a set of all possible
markings of the net. Thus, whenever we say that two nets are bisimilar, we mean that
their initial markings are bisimilar.

Definicja 3. Let LPTi and LPT2 be labelled Petri Nets. A strong bisimulation is the
relation B between the markings of LPTi and LPT2, such that for all (Mi, M2) S B
and for all a G Actipy.-

-ifMi -^ M{ then M2 -^ M^for some M^ such that (M{, M^) e B and
-ifM2 -^ M^ then Mi -^ M[for some M[such that (M{, M^) € 5

The simlar definition could be given for a weak bisimulation. We would say that
Ml is strongly bisimilar to M2 and denote it Mi ~ M2, and Mi is weakly bisimilar
(observable equivalent) to M2 and denote it Mi « M2. Two Petri nets are in strong
(weak) bisimulation if their initial markings are in strong (weak) bisimulation.

Notions like strong and weak bisimulation were originally defined in the context of
process algebra CCS. Appropriate definitions, as well as a detailed description of the
formalism, might be found in various positions [9,10].

www.manaraa.com

Hybrid modeling and verification of Java based software 123

3 Transformation of Labelled Petri Nets to CCS

Let iV be a finite labelled Petri net and G^ = (V, A) be its reachability graph. Because
TV is finite, Gfq is also finite; i.e. both sets V and A are finite. Let us enumerate the
set of vertices as follows: V = (MQ, • • •, M^). Let 0{M) be a set of all vertices from
V that can be directly reached from M; i.e.:

0{M) = {Mi e V : M[t)Mi e A}
For every vertex M eV let $(M) be the agent in the form:

#(M) = EM, L{U).${Mi)
where ti is a transition such that M[ti)Mi G A.

We would say that the symbol ^ denotes transformation of the given Petri net N,
with the initial marking MQ, to the corresponding CCS agent fP(Mo) according to the
scheme presented above.

Let us consider the net Â î (Fig.l).

Mor
(1,1,0)

M i r

M (0,1,1)
1M3

(1,0,1) -H (0,0,2)
1M2

Fig. 1. Petri net TViand its reachability graph

Transitions ti, t2, ts, of Ni are labelled correspondingly: L{ti) = c, ^(^2) =
a, L{tz) = b. The reachability graph of iVi contains four vertices that denote four
possible markings: Mo, . . . ,Ms (Fig.l). According to the assumed transformation

algorithm, the algebraic equivalent of Ni is the CCS agent ^ (M Q) = ^(iVi) defined
as follows:
*(Mo) =a.<?(M3)+b.<?(Mi), #(Mi) = a.<?(M2), ^(M^) =h.^M2), <5(M2) =
c.^(Mo).
Transformation # is consistent with the relations of strong and weak bisimulations, which
means that if two Petri nets are bisimilar, their algebraic equivalents are also bisimilar.

Theorem 1. For two finite labelled Petri nets LPNi, LPN2 if LPNi - LPN2,
thus also ^{M^'') ^ <?(M^^)̂ where M^^ and M^^ are initial markings of LPNi
and LPN2.

Proof. Let us assume LPNi ~ LPN2- Satisfying the equivalence ^(Afg) ~
requires;

- Va : #(M($^^) •

andAP^Af
- V6 : ^(Mo^^') -

A P exists ^ P , such that #(Mp^)

Bp^ exists B P , such that <?(iv4^^)

AP

BP
(1) and Br> ~ B} j(2)

www.manaraa.com

124 Konrad Kulakowski

If for some a exists transition # (M Q) - ^ ^ j , it means that by knowing the

construction of the agent $(M^^^), we also know that M^Q^\ti)M^\ where L(tj) = a

and <?(Mp^) = A^P. In other words, M^^^ -^ M[^\ Because LPNi ~ LPiVs

there is MQ ~ MQ . Thus, on the basis of these two facts, there is Mj such that

M^^ -^ M^\ Let us denote Af^ = ^ (M f ^). Considering the construction of

<f(Mf^), we know that there is transition ^(M($^^) - ^ ^ (M ^) .

The question arise whether Af ^ ~ Af\ i.e. if <5(Mf)̂ ~ # (M f)̂ (and similarly,
if Bf^ ~ B p b . Let us note that M f ^ ~ M f ^ (as a consequence of LPiVi ~ LPiV2).
In other words, using the same reasoning as presented above, but this time applied to
the nets LPNI{M[^'^) i LPN2{MP) - i.e. to net LPNi with marking M^ and
net LPN2 with marking M^, we may show that # (M}^^) ~ <?(Mf ^), which is of
course true if and only if ^2 ~ ^2 ^'^'^ ^2 -^i '••• ^^'^ ^° '^^- ^y repeating this
operation, we prove equivalences: Ay ~ A^ \AI ' ~ A\ ',... and correspondingly
S f ^ i 3 « , B f ~ S « , . . . e t c .

After the r-th iteration, we have to prove that ^(M^) - ^M?'^). These two

agents satisfy the relation ~ if A^^l^ ~ A^^^ and B^^\ ~ Bf^-^. If in steps h^h, such

that 0 < 1̂ < r, 0 < 2̂ < ^. the equivalences Ai ' ^ A \ ' and J5; ^ ~ B;̂ ^ have been

proven, where A'^^I^ = Af^, Afl^ = AI'^K B^^ = B\f and B^^i = ^If ^ "̂ ^ ^^y
stop our reasoning at this point. If not, this situation must happen at the latest for r = pq,
where p is the number of vertices in the reachability graph GLPM-^ and g - is the number
of vertices in the reachability graph GLPN^ . This is because, if we reach r-th step of
out reasoning (r = pq), this means that for every pair of agents ^(M> '). ${Mj '),
where ikff \ MJ^^ 6 VI^PN.VLPN^, it is true that ^(MP) ~ #(MJ^^).

According to the presented reasoning scheme, the following theorems can also be proved.

Theorem 2. For two finite, labelled Petri nets LPNi and LPN2, if LPNi « LPN2,
thus also <P(il4^^) « ${MP), where M^'^ and M^̂ ^ are initial markings of LPNi
and LPN2.

Theorem 3. For every two finite labelled Petri nets LPNi,LPN2
if${M^^^) op ^(M^^^), then LPNi op LPN2, where op e {~, w},
and MQ ,MQ ' are initial markings of LPNi o.nd LPN2-

4 Hybrid modeling - case study

Petri Nets are very often used in the modeling of reactive systems behaviour. The Petri Net
could act both as a specification or as a design. When specification is considered, usually
a small Petri Net is used. It defines activities which determine basic system functionahty.

The ideas of strong and weak bisimulation could be implemented into the Petri Net
formahsm. Thanks to the presented transformation, analysis of bisimilarities on the basis
of the net's algebraic representation is possible. It also allows us to: model comparisons

www.manaraa.com

Hybrid modeling and verification of Java based software 125

in terms of bisimulation property and project validation against specification which
might be written in the form of a set of temporal formulas.

Different model comparisons

Let us consider a model of a system that consists of several diflFerent processes
responsible for data processing and one process responsible for printing the result. In
our example, data processing consists of two separate activities denoted correspondingly
by a and h. Data processing is complete if both activities are done. A result printing
is represented by activity c. The order of activities, a and h is not important. Both
sequences a, h and 5, a are allowed. The only requirement is that a and h must take
place before c. In our mini-system, these activities will be modeled by actions; i.e. the
activity is complete if an action occurs.

Assuming that actions a and 6 occur independently (e.g. in a separate processes),
a situation like the one described above is modeled by the net N\ shown in the figure 1.
In general, Â i depicts the system in which two different processes do action a and h,
and next they wait until c is done.

This very popular synchronisation model was reflected in modern Java in the form
of a CyclicBarrier class [11]. It provides a convenient synchronisation aid that allows
one thread to wait until other threads complete their tasks. Of course the requirement
that before c both actions a and h must occur might be fulfilled differently. Let us
consider a NaivyApp simple sequential application which may perform two possible
scenarios: a, b, c and b, a, c. In deed, these appUcation also meets the requirements that
both actions a and b must occur before c.

The behaviour of NaivyApp is modeled by the net N2 shown in the figure 2. This
net corresponds to a simple sequential program that performs the actions a, b, c or
b, a, c repeatedly in turn.

Mi
P- [(1,0,0,0)) >[(0,0,0,1)

Mr
(0,1,0,0)

MX

^ (0,0,1,0)

Fig. 2. Net A'̂ 2 and its reachability graph

Because both nets Â i and N2 represent the programs that satisfy our informal
specification, the question comes up whether their behaviours are the same. In order to
answer this question, the reachability graph of N2 is built (figure 2). It enable us to
construct agent ^(iV2), which is the algebraic representation of Â 2-

#(Mô ^)̂ = a.^(Mf^) b.#(MP), <|i(MP) = b.<P(Mf̂), # (M P) =

According to the theorem 3, the nets A''i and N2 are bisimilar if agents ^ (M Q) and
#(Mo ') are bisimilar. A quick automatic check proves that ^ (M Q)
and thereby it will be shown that Ni ~ iV2-

#(Mo^^0 [12],

www.manaraa.com

126 Konrad Kulakowski

5 Summary

For several years, a significant increase of demand for reliable multi-threaded software
can be be observed. As a result, libraries supporting the building of concurrent
applications for many programming languages are available [13,11] (e.g. a recent
version of Java incorporates the new java.util.concurrent package). This trend also
make stronger a need for the creation of convenient and versatile formal methods that
support specification and design of concurrent software.

The hybrid modeling technique presented above helps to achieve this goal. It
facilitates using bisimulation in the context of models given in the form of Petri nets.
Because of transforming a net to an appropriate CCS agent, it is possible to proceed
with further analysis in well defined algebraic formahsm, including suitable tools such
as CWB [12].

Defining algorithms and methods that shorten the distance between formal methods
such as Petri nets or CCS algebra and the Java language will pose a challenge to author
in the near future.

References

1. McConnell, S.: Code Complete. Microsoft Press, Redmond, WA. (1993)
2. Bruns, G.: Distributed Systems Analysis. Prentice Hall (1997)
3. Goltz, U.: CCS and Petii Nets. In: Semantics of Systems of Concurrent Processes, Berlin -

Heidelberg - New York, Springer (1990) 334-357
4. Kulakowski, K.: Konstrukcja i Analiza Oprogramowania Sterownikow Wspomagana

Metodami Formalnymi. PhD thesis, Akademia Gorniczo-Hutnicza (2003)
5. Groote, J., Voorhoeve, M.: Operational semantics for petri net components (2003)
6. Fencott, C: Formal Methods for Concurrency. International Thomson Computer Press,

Boston, MA, USA (1995)
7. Milner, R.: Communication and Concurrency. Prentice-Hall (1989)
8. Jancar, P., Esparza, J.: Deciding flniteness of Petri Nets up to Bisimulation. Lecture Notes

in Computer Science 1099 (1996)
9. Milner, R.: A Calculus of Communicating Systems. Volume 92 of LNCS. Springer-Verlag

(1980)
10. Fidge, C: A comparative introduction to CSP, CCS and LOTOS. Technical report (1994)
11. Lea, D.: Concurrent Programming in Java. The Java Series. Addison-Wesley, Reading, MA

(1997)
12. Moller, F., Stevens, P.: Edinburgh Concurrency Workbench user manual (version 7.1).

(Available from http://homepages.inf.ed.ac.uk/perdita/cwb/)
13. Nino, J., Hosch, F.A.: An Introduction to Progranmiing and Object Oriented Design Using

Java 1.5. Second edn. Wiley, Hoboken, NJ (2005) With CD-ROM.

www.manaraa.com

An evolutionary approach
to project management process improvement

for software-intensive projects

Pawel Pierzchatka

Q-Labs GmbH, Germany
Ingersheimer Str. 20, 70499 Stuttgart

pawel.pierzchalka@q-labs.de, ppierzchalka@yahoo.de

Abstract. Project management plays an important role in software engineering
discipline. Project management is about delivering projects "on time", "in
budget" and "in quality". Introducing, applying and improving project man
agement process requires systematical and coordinated approach, which helps
to overcome organizational barriers, reduce implementation cost, provide
knowledge sharing and secure achieved results. Many companies within the
software-intensive automotive industry have decided to start the organization-
wide process improvement programs. In this context, project management is
one of the first key issues on the way to the better processes. This article pre
sents an evolutionary approach to introducing and improving project manage
ment organizational methodology. It defines steps needed for incremental im
plementation of project management in software-intensive organization and its
component-projects. It discusses the key success factors, prerequisites, methods
and tools used on the way to the better, systematical, universal and practicable
project management process.

1 Introduction

Nowadays project managemetit is an increasingly growing discipline. Many interna
tional and local orgaiiizations (such as Project Management Institute in U.S., Gesell-
schaft fur Projekt Management in Germany, or Polskie Towarzystwo Informatyczne,
Sekcja Zarzadzania Projektami in Poland) are supporting the growth and improve
ment of project management. These organizations promote the usage of the modem
project management principles across all disciplines, with a special focus on software
industry. They also support practitioners in mastering their project work.

The modern process and quality reference models underline the role of project
management in the development work. Such models as CMMI, ISO 15504, or
PMBOK provide an extensive guidance on project management [1-5].

Project management is now recognized as one of the basic methods in the modem
software engineering. It is one of the essential elements enabling the success of the
software and system development initiatives [6-8].

The automotive industry has also recognized the impoilance of project manage
ment in the electronic and software-intensive development projects. In the next dec-

Please me the following format when citing this chapter:

Pierzchalka, P., 2006, in IFIP International Federation for Information Processing, Volume 227, Software Engineering
Techniques: Design for Quality, ed. K. Sacha, (Boston; Springer), pp. 127-138.

www.manaraa.com

128 Pawel Pierzchalka

ade electronic and software will account for approximately 90% of all future automo
tive innovation. Electronic and software are becoming critically important and will
share approximately 40% of the cost of car production. At the same time the complex
ity of the software-intensive systems in modem vehicles is rapidly growing. Nowa
days a high number of electronic control units are present in the car. They communi
cate through internal buses and influence each other. Almost every part of the car is
now controlled by electronic and software - starting with engine/gear control, chassis,
traction control systems, windows, light control and ending with the modem car navi
gation and entertainment systems.

The increasing role of software in modem vehicles requires better management of
the car development projects. In order to deal with the size and complexity of the ve
hicle systems, automotive companies have decided to start the company-wide process
improvement programs. By introducing process improvement they want to deal better
with the increasing complexity, improve product quality, to improve productivity and
efficiency of the development departments. Within those process-oriented ap
proaches, project management process plays an important role, aheady at the begin
ning of a process improvement initiative.

The experience gained during the implementation of project management in the
context of software-intensive automotive systems lead to this work. This article pre
sents an evolutionary approach to introducing and implementing the project manage
ment methodology within software-intensive automotive systems, ft presents the key
factors, methods and selected tools, which lead to the successful and sustaining im
plementation of the project management within the organization. The special focus is
put on the component-projects - projects that aim to develop the single software-
intensive component (e.g.: electronic gear control, control panel, roof control panel)
resulting from the cooperation between the OEM and suppliers.

2 An Evolutionary Approach to Project Management Process
Improvement

The article presents an evolutionary approach to introducing and improving the pro
ject management within the context of the organizational process improvement pro
gram. K is based on the author's experience collected during the implementation of
the project management principles within multiple automotive companies, ft presents
the suggestion of the Project Management Process Improvement Model (PM-PIM).
The article introduces the maturity levels needed for introducing, carefully imple
menting and then mastering project management within the software-intensive or
ganization. The proposed levels build on each other, e.g.: establishing the project
management framework (Level 1) is a prerequisite for starting with piloting and roll
out of project management practices in the component development projects (Level
2). Implemented project management practices (Level 2) are the basis for more ad
vanced project management, including definition of the tailoring guidelines for pro
ject management process, quantitative project management and fiuther continuous
improvement (Level 3).

www.manaraa.com

An evolutionary approach to project management process improvement for software-intensive 129
projects

The content of the suggested Project Management Process Improvement Model
(PM-PIM) is presented on the Figure 1.

I ' Project Management Process tmptovemeJitKtodeI.(PM-PlM) - ,

Level 3 (Organization) sustaining
Making imprnved pro,oct
managomont processes . continuously improving project maragoment
state of the an" in tie . Tailoring the oraanizational process
organization and mastering . collecting Lessons Learned
project management . f:„||^g p^, Knov^edge Repository

- Quantitatively managing projects
- USing measurement data

Level 2 (Project) Implementing
Introdjcing basic and then
more aav'anced oroject - Piloting and Rollout advanced project management practices
management practices - - Measurements, Risk Management
focus on a project • Maturing based on the 'irst successes

- Piloting basic project management practices
- Focus on project management v;ork products (basic)
- Implementing "low hanging fruits" and generating short term wins

Level 1 (Organization) Establishing
Creating drive for change
and establishing - Setting up and developing Project Management Framework
organizational structures - Establishing Project Management Process Group (or PMO as a driving po*er)
for systematic project - Obtaining sponsorship and commitment
management - Defining goals

- Assessing the current state
- Creating need for change

Fig 1. Project Management Process Improvement Model (PM-PIM)

The focus of the model is software-intensive organization and its component-projects.
The discussion of the model elements is presented in the article below, taking into ac
count successful and sustaining implementation of project management process im
provement.

2.1 Level 1 - Establishing

The Establishing level refers to creating the organizational environment for the suc
cessful improvement of project management practices. It is about creating drive for
change in project management, assessing the current state of project management
practices, defining goals based on the organizational business goals and assessment
results, obtaining sponsorship and creating a guiding coalition for the project man
agement initiative, collecting the right people on board and working out the first Pro
ject Management Framework. It is the responsibility of the organization to achieve all
the points discussed in the Establishing level. Before starting the operational project
management process improvement work with the projects, the issues discussed in the
Establishing level should already be in place.

Creating need for change. Introducing a systematic project management process is
usually linked with the change to the current "lived" processes. Before starting the

www.manaraa.com

130 Pawel Pierzchalka

improvement work the company must understand the reasons for doing the work.
There are different sources, which drive the need for change in project management.
These sources can be internal (poor results from past projects, firefighting, recall ac
tions, improvement initiatives, business goals, management requirements) or external
(market trends, studies, customer expectations, regulatory and governments require
ments) to the organization.

There must be a real sense of urgency in the organization to provide a right set-up
for project management improvement initiative. The organization must really want to
move, to change the current way of working. Usually the best way to achieve this is to
learn by its own experience of the problems in the past. Some examples are the fire-
fighting situation at the end of the project, using too many resources on fixing the
problems, huge cost overruns or even putting in danger the vehicle development pro
ject end milestone - called Start of Production (SOP).

"Feeling the pain" is the best driving factor for starting with the deep-grounded
project management process improvement. On the other side, if the company has not
experienced any problems itself, it is rather hard for the employees to understand that
there is a need for change. It is then the role of management to convince the teams
and also themselves that the change and improvement are needed. Creating the need
for change - it is about being proactive - thinking about potential problems before
they occur.

Assessing the current state. Assessing the current state of project management is
about determining where you are now. The current state of the project management
processes should be assessed in order to determine, what is already in place and what
needs to be done to close the gaps in the current „lived" project management
processes.

While assessing the status of the project management practices some process refer
ence models can be helpfiil. One of the reference models - Capability Maturity Model
Integration (CMMI) - provides a description of the "best practices" for project man
agement [2-3]. The project management in CMMI is divided in some Process Areas,
both on the fundamental as well as on the progressive level. The fundamental Project
Management Process Areas includes Project Planning (PP), Project Monitoring and
Control (PMC), and Supplier Agreement Management (SAM). The progressive pro
ject management Process Areas includes Integrated Project Management (IPM), Risk
Management (RSKM), Integrated Teaming (IT) and Quantitative Project Manage
ment (QPM). These CMMI project management Process Areas cover activities related
to project planning, monitoring and control. They provide a lot of guidance on what is
important for the systematic project management. The CMMI model enables to assess
the current project management practices, identify gaps against the CMMI project
management practices and define actions, which need to be implemented in order to
improve project management practices.

Another alternative to assess project management is using another model -
ISO15504 / SPICE [4]. In this model project management plays also a central role.
The process group Project Management (MAN3) deals with project management.
Some other process groups provide additional details on project management, i.e.:
Risk Management (MANS) or Measurement (MAN6). The usage and importance of
the process reference models in the software-intensive automotive industry is well

www.manaraa.com

An evolutionary approach to project management process improvement for software-intensive 131
projects

visible at the example of the SPICE model. In the year 2005 the new version of the
SPICE model was created with the focus on the automotive industry. The result is
Automotive SPICE [5]. This model adds on the additional automotive focus to the
standard SPICE model. Project management plays here an important role. Most of
German automotive OEMs assess project management implementation of its suppli
ers, using SPICE as a reference model.

Performing an assessment against the reference model results in a list of the or
ganization's strengths and weaknesses in the project management process. At the end
of the assessment the clear picture of the project management current state is available
and project management process improvement roadmap is established.

Defining Goals. Goals specify where you want to go. Having the picture of the
current state, you can define where are the gaps in the project management process
and then you can define where you want to go. The important input for definition of
the improvement goals is the result fi-om the assessment of the current project
management process. In addition, the goals for project management processes should
be derived from the organizational business goals and process improvement
objectives. Defining goals for project management visualizes, how the project
management fits within the overall process improvement initiative, and also within
the business organizational context.

Obtaining sponsorship and commitment. For every improvement initiative there is
a need for a strong sponsorship from the senior management. Senior management
plays a sponsor role and is responsible for linking the project management process
improvement activities to the organization's vision and mission.

It is important that a sponsor has a management role at a high enough level in the
organization structure. The sponsor has an authority to direct activities, states the ob
jectives and commits the allocation of resources (people, materials, funding) for pro
ject management process improvement initiative.

Senior management sponsor should be involved and committed to the project man
agement improvement activities. This involvement and commitment is demonstrated
for example by defining organizational policies, presenting the project management
improvement effort goals at the employee forum. The sponsor must "walk the talk". It
means, even in the technical problem situation the organization will stick to the pro
ject management policies. For example, if the policy states that every project is asked
to perform risk management workshop, the senior management will force to do so,
even if a project manager will try to avoid it by showing that there is no time for risk
management. Another sign of the sponsor commitment to project management im
provement initiative is showing interest in the work progress, encouraging and par
ticipating in the reviews of project management improvement activities.

It is also the job of a sponsor to remove barriers and obstacles that block the project
management process improvement effort. The value of a sponsor cannot be underes
timated. Strong, committed and proactive sponsorship is the key factor to the success
of project management process improvement activities.

www.manaraa.com

132 Pawel Pierzchalka

Establishing Project Management Process Group (or PMO as a driving power).
The Project Management Process Group (PMPG) is a group of people interested in
project management. It is a driving power for successful implementation of the
change in project management. This group manages the project management process
defmition activities. It is typically staffed by the professionals whose primary
responsibility is coordinating project management organizational process
improvement.

Organisation: Definition and IMaintenancc of PM-Process. Knowledge Transfer and Trainings

Definition, Dcveiopinent. and Knowiedye Management and Tiainings
Maintenance of PM-Proccsscs
Standards and McasurL-mcnts \":.'••• i^;,':'•,j - , (- i i . . (; i • •

l i s s - ! M i l i - l ;

1 1 ' . • 1 t . ' .1

I > r , , - 1 . ••

n i . - ' , i u - • • . . • • • • J .

" 1 - : - . - ,

•V. • • . , , • i . ' l ' f • ' ! • • • ^ , . ; . ' . 1 • : • • • ' * • i ' ' '

t\' <,•< H . A " 1 . , ' . ' i , ' - , . " 1, ' 11.

PMO
Manage and Control

Active support foi Project Initialization and Planning

' M ' . i - • ! , . r t ' * T ~̂ » • ti i r t / , ' - . . ' . I'l * (' ! . ' 1 ' • - i ' l . ' i^n'i •>i, I . ' 1 " .^ :

\ - O*- . î î .-i.-̂ '̂ s • r ' T - '. •' I • ' -n • , . •e.'r-,', ': . 'z

Active Support Project Monitoring and Control

• ' M 1 , - r . -•!; I •.; ' I > i u . j " '•• T'.','"' :" . I ' l ' .1 " < j ' - ' l • Ml

. t •" ^ " 31 1 ' r .»r..r -1 K j(- ^ 1' .; IC ^. 1 'i J - i " . •' ' llrl'i ' 1 '.

Project: Aciive Support

Fig. 2. Role of PMO in the organization

This Project Management Process Group is usually concentrated around Project
Management Office (PMO). The practical experiences show that installing the PMO
in the organization will facilitate and speed up the project management process im
provement. PMO is an organizational unit, which is used to centralize the project
management expertise and manage the projects. While introducing a systematic pro
ject management, PMO will play an important role, serving the projects with the pro
ject management competence, and also supporting by the introduction of the PM
methods and tools. The role of the PMO is presented in Figure 2.

PMO provides support by implementing and improving project management in the
component-project. Some additional PMO features to be underlined while improving
project management processes are:

- Assessing current "lived" PM processes, identifying gaps and defming actions
- Identifying, applying and improving of project management processes
- Using industry-proven PM methods and techniques
- Training-by-doing / coaching / "hands-on" support
- Involving all relevant parties (projects, suppliers, departments and teams)

www.manaraa.com

An evolutionary approach to project management process improvement for software-intensive
projects

133

Setting up and developing Project Management Framework. There is a need to
develop and set up the Project Management Framework. It is about preparing the first
definition of the project management process. The findings from assessments are
used. PMO members contribute with their various project management experience.
Best project management practices and guidelines, taken from the reference models
are also beneficial. The project management process description is mapped to the
organization structure. The objective is not to provide a perfect, 100% ready process
description. It is more about the first draft of the project management process, which
is good enough to start with the first implementation.

j ject Maoaqement Plan
•VBS
Schedule
::osf Plan
3ua!iiy Plan
resources PJan
'raining Plan
Communication Plan
^lak Management Plan
^racuremert Plan

• Project
• Proje""l ni j j i^
' Project rea'n L
• Project Kitk-OI

' • Project Report
; ' Measurements
^ • Reviow,s Results

* Meeting Minute's
• Action List

Project Restilts

Fig 3. Overview of the project management process with work products

Project Management Framework describes the project management process and in
cludes also the basic set of pre-defined templates describing project management
work products (see Figure 3).

In addition, the visualization of the link between project management process and
the organization (existing organizational processes, organization departments and
teams) is also provided.

2.2 Level 2 - Implementing

The Implementing level is about piloting and rollout of the improved project man
agement practices across the projects within the organization. It is done in two
phases. At the beginning basic project management practices are introduced, starting
with some selected pilot projects. In the next phase more advanced project manage
ment practices are implemented. The objective is to reach all projects in the organiza
tion. It is the responsibility of the projects, especially project leaders, to implement
the improved project management practices. While implementing the practices the
project leaders receive active support from Project Management Office.

www.manaraa.com

134 Pawel Pierzchalka

Piloting basic project management practices. The first phase of the Implemen
tation level is about implementing the basic project management practices. In some
selected pilot projects first elements of project management process are introduced.
This first step is to pilot and gain acceptance of the improved project management
practices across projects.

At the beginning, it is important to select small improvements with quite a lot of
impact on the projects. In order to identify these elements the results of the project
management assessment are used. The assessment results make visible, where are the
gaps in the project management process and improving which of them can be most
beneficial for the projects. It is about picking up the "low hanging fruits - issues with
low effort and high positive impact for the projects. They can be quickly implemented
in the projects and they bring visible positive improvements in the projects. In conse
quence, they will generate acceptance for the project management initiative among
project leaders. These first "short-term wins" are crucial for the fiirther success of the
whole project management improvement initiative. Short-term means here days or
weeks, not months.

Project leaders in software-intensive automotive projects are more technical ex
perts than project managers, with a strong orientation on delivering results and less
experience in process management. In order to facilitate the project management
process improvement, the work should concentrate on working out the project man
agement work products. The work products are the tangible results of the project
management process. Concentrating on the work products brings more focus, results
in the tangible deliverables and drives the project management work into the right di
rection. And while working with the work products the people learn how the project
management process works.

Some of the project management work products, which are worked out at the be
ginning of the project management improvement initiative include:

- Statement of Work
- Project Book
- Work Breakdown Structure (WBS)
- Project Management Plan (first draft)
- Project Report (simplified)
- Action List

Introducing these elements brings the first project management benefits into the
project life. The role of the Project Book and Project Report are discussed with more
details below.

Project Book. The experiences show that introducing the Project Book brings the
project management structure in the early phase of the project life. Project Book is the
central document for project agreements and starting point for all relevant project in
formation.

The Project Book consists of the following elements:

- Project content (objectives, scope, assumptions & constraints, milestones)
- Project organization (project chart, in&astructure, meetings, tools)
- Roles and responsibilities
- Processes (selection of the processes relevant for the project)

www.manaraa.com

An evolutionary approach to project management process improvement for software-intensive 135
projects

The project leader creates or manages the development of a Project Book. The ele
ments documented it the Project Book create the baseline for further work on the pro
ject. The component project is usually placed within the organizational structures, in
cluding system projects, product lines, competence centers, organization departments
and multiple suppliers. Creating and clarifying elements of the Project Book helps to
deal with all these relevant parties. One important issue is to describe the project roles
and responsibilities. It helps the project leader to reach commitment on the project
from project participants.

Project Report. When the project runs, then the Project Report is a valuable project
management tool. Project reporting determines where is the project in terms of sched
ule, budget, functionality and quality. It is about looking at the decisions needed to be
taken, problems or foreseen risks. The project leader creates the Project Report. The
status of the project is a result of his professional judgment, with consultation with
component-project supplier and other project team members. The Project Report is
used to report all relevant aspects of the project to the relevant project stakeholders. It
can also be used to escalate the issues, which cannot be solved within the project. Pro
ject reporting helps to take decision on the fiiture of the project. It is important to in
tegrate the Project Report in the project lifecycle. The Project Report should be pre
pared in regular time intervals, for example as a part of the project meeting.

Typical content of Project Report includes:

- Overall project status (e.g.: traffic light with reasoning)
- TOP Topics: Highlights, Decisions, Milestones, Defects, Risks, Non-technical

Problems, Next Steps
- Project progress measurements (in more advanced status reporting)

The Project Book and Project Report are discussed here in detail, due to the fact,
that they have proven the high usability during the work within the component pro
jects. Other project management work products are also inevitable. Implementing the
proper project management you should not forget a careful preparation of the project
work breakdown structure and project management plan. You cannot control your
project without having a proper plan.

Piloting and Rollout advanced project management practices. In the second phase
of the Implementation level more advanced project management practices are
introduced. It is about fiirther refining a basic project management practices.
Measurements are introduced and risk management process is implemented.

Measurements. Measurements provide an added value for monitoring and control
of the project progress. They are collected and analyzed as a part of the project status
reporting. They are visually presented in the cockpit chart. The project metrics are de
rived Ixom the project objectives. The experience shows that usually the following set
of measurements will fulfill the project management progress monitoring require
ments:

- Milestone Trend Analysis
- Effort / Rework
- Activities / Work Packages
- Functionality / Work Products

www.manaraa.com

136 Pawel Pierzchalka

- Defects / Problems
- Risks

The measurement process is also introduced. It describes how to define, describe,
collect, analyze and report the measurement data. The measurement process provides
guidance on how measurement activities should be performed in the project. It pro
vides methods and tools for defining measurement goals, creating operational meas
urement definitions, and presenting and analyzing the measurement data.

Risk Management. Risk management process describes how to perform project
risk management in the structured, organized way. It is about introducing the system
atic approach in managing component project risks. It also refers to extending the
viewpoint of the technical oriented project leaders. Usually component project leaders
understand risk management as the technical analysis of the potential problems in the
product. But risk management involves also project or process aspects. Project risks
are for example schedule, people resources, budget, interfaces, project stakeholders or
politics. Process risks are for example development processes, management proc
esses, standards, policies, quality or communication. Risk management introduces a
change in the way of thinking of the project leaders - from the technical product cen
tered to the project, product and process centered. It also introduces another shift in
the projects - from the problem solving modus to proactive way of working. Risk
Management enables to identify some potential problems before they occur. It is
about thinking what can go wrong, and acting against it. Risk management address is
sues that can endanger the achievement of project objectives (time, scope, budget,
quality). Risk management enriches and complements very well with the project
management process.

The goal of the rollout phase of the Implementation level is to reach with the im
proved project management practices all projects within the organization. While im
plementing the PM-practices, the first experience has been collected. The results and
experience achieved by the projects in the Implementing level should be stored and
prepared for the further use. It is the role of the organization to make sure that the
improved project management will stay and continually improve. This is a topic of
Level 3 - Sustaining the project management process improvement.

2.3 Level 3 - Sustaining

The Sustaining level is to ensure that the project management is anchored in the or
ganization. It is about improving the project management practice in the organization.
It also means managing the organization's projects based on facts - using the meas
urement data.

Quantitatively managing projects. The measurements are collected in the projects
and used to control the projects at the organizational level. The data are aggregated
according to prior defined reporting structures. For example, the measurement data
can be aggregated within the department or product line, according to the measure
ment customer needs and objectives. The measurements are used to take decisions not

www.manaraa.com

An evolutionary approach to project management process improvement for software-intensive 137
projects

only at the component project level, but also at the organizational level. The organiza
tion is then managing by facts.

Having the measurement data collected, more advanced analyses of the data ai-e
performed. They are performed for the identified, selected important project issues.
To perform data analyses more advanced quality management tools are used: e.g.:
cause-and-effect diagram, Pareto chart, scatter diagram or control charts.

Continuously improving project management. Continuously improving project
management means to collect experiences from the implementation of project
management process elements in the projects. It is about providing the organizational
stractures that support and encourage project management process improvement. At
this point the role of Project Management Office is important. The PMO drives the
project management knowledge management. As a central organizational stmcture,
PMO facilitates further definition, development and maintenance of project
management processes and standards. For more information on the PMO role in
Sustaining the project management see also Figure 2.

Project management improvement proposals are continuously collected, analyzed
and implemented. At the end of projects Lessons Learned workshops are performed
with key project participants. All the relevant project management related information
is stored in the project management knowledge repository. This information is ana
lyzed, categorized and prepared for the future use. All future projects can use the ex
perience from the past similar projects.

The organization provides the mature, standardized, organization-wide description
of the project management process. All projects can use this universal description.
The process description must be tuned to the special needs of different departments,
or different project arts. The organization provides Project Management Tailoring
Guidelines. The Tailoring Guidelines describe, how the project management will be
used in the different organizational settings. It describes, what is required in the pro
ject management process implementation, and what can be skipped or modified de
pending on the environment of the project.

3 Summary

Improving project management is about Establishing, Implementing and Sustaining
the project management practice in the organization, as summarized in Figure 4.

The article presents an evolutionary approach to project management process im
provement, based on the experience with introducing the project management within
the software-intensive automotive systems. It systematizes the experience and defines
the Project Management Process Improvement Model (PM-PIM). Implementing im
provement in project management involves the continuous cooperation between the
organization and component projects. The organization creates the required environ
ment, provides support and facilitates the continuous improvement of project man
agement process. The role of the projects is to implement and verify in practice the
project management process improvements.

www.manaraa.com

138 Pawel Pierzchalka

Organisation
Focus

Project
Focus

•imAifmsaA
1: Establishing

muxemssm
3; Sustaining

Fig 4. Project Management Process Improvement Model summary

And at the end, it is about successful organizations, happy people and projects be
ing "on time", "in budget" and "in quality".

References

1. A Guide to the Project Management Body of Knowledge, Third Edition, (PMBOK Guide),
Project Management Institute, Newton Square, Pennsylvania, USA, 2004

2. Capability Maturity Model® Integration (CMMI™), Version 1.1, CMMI Product Team,
March 2002 (http://www.sei.cmu.edu/cmmi)

3. CMMI - Guidehnes for Process Integration and Product Improvement, Mary Beth Chrissis,
Mike Konrad, Sandy Shrum, Addison-Wesley, 2003

4. ISO/IEC 15504 (SPICE) Standard, 2006
5. Automotive SPICE, Process Assessment and Reference Model, Automotive SIG, 2005
6. Project Management, Harold Kerzner, John Wiley & Sons, 2003
7. The Fast Forward MBA in Project Management, Eric Verzuh, John Wiley & Sons, 1999
8. Basiswissen, Software-Projektmanagement, Hindel, Hermann, Miiller, Schmied,

dpunkt.verlag, 2004

www.manaraa.com

Improved Bayesian Networks
for Software Project Risk Assessment

Using Dynamic Discretisation

Norman Fenton', Lukasz Radlinski^, Martin Neil''

''•' Queen Maiy, University of London, UK
norman@dcs.qmul.ac.uk

^ QueenMary, University of London, UK
and Institute of Information Technology in Management, University of Szczecin, Poland

luki'ad@dcs.qmul.ac.uk

Abstract. It is possible to build useful models for software project risk assess
ment based on Bayesian networks. A number of such models have been pub-
Hshed and used and they provide valuable predictions for decision-makers.
However, the accuracy of the published models is limited due to the fact that
they are based on crudely discretised numeric nodes. In traditional Bayesian
network tools such discretisation was inevitable; modelers had to decide in ad
vance how to split a numeric range into appropriate intervals taking account of
the trade-off between model efficiency and accuracy. However, recent a recent
breakthrough algorithm now makes dynamic discretisation practical. We apply
this algorithm to existing software project risk models. We compare the accu
racy of predictions and calculation time for models with and without dynamic
discretisation nodes.

1 Introduction

Between 2001 and 2004 the collaborative EC Project MODIST developed a software
defect prediction model [4] using Bayesian Networks (BNs). A BN is a causal model
normally displayed as a graph. The nodes of the graph represent uncertain variables
and the arcs represent the causal/relevance relationships between the variables. There
is a probability table for each node, specifying how the probability of each state of the
variable depends on the states of its parents. The MODIST model (used by organisa
tions such as Philips, QinetiQ and Israel Aircraft Industries) provided accurate predic
tions for the class of projects within the scope of the study. However, the extendibility
of the model was constrained by a fiindamental limitation of BN modelling technol
ogy, namely that every continuous variable had to be approximated by a set of discre
tised intervals (defined in advance). Since the MODIST project has been completed
we have addressed the problem of modelling continuous nodes in BNs. A recent
breakthrough algorithm (implemented in the AgenaRisk software toolset) now en
ables us to define continuous nodes without any restrictions on discretisation. The
necessary discretisation is hidden from the user and calculated dynamically with great
accuracy. In this paper we describe our work to rebuild the defect prediction model

Please use the following formatwhen citing this chapter:

Fenton, N., Radliiiski, L., Neil, M., 2006, in IFIP International Federation for Information Processing, Volume 227, Soft
ware Engineering Techniques; Design for Quality, ed. K. Sacha, (Boston; Springer), pp. 139-148.

www.manaraa.com

140 Norman Fenton, Litkasz Radlinski, Martin Neil

using this approach to dynamic discretisation. In Section 2 we provide an overview of
the MODIST model and explain the limitations due to static discretisation. In Section
3 we provide an overview of the dynamic discretisation approach and then apply it to
construct a revised MODIST model in Section 4. We present a comparison of the re
sults in Section 5.

2 Existing models for software project risk assessment

The defect prediction model developed in MODIST is shown in schematic form in
Figure 1.

Scale of new spec
and doc work

Specification
process quality

Testing and reworit
process quality

Fig. 1. Schematic view of defect prediction model; adopted from [2, 4]

www.manaraa.com

Improved Bayesian Networks for Software Project Risk Assessment 141

Its main objective is prediction of various types of defects inserted or removed dur
ing various software development activities. All ellipses on this figure indicate a node
of a Bayesian Net. Rectangles indicate subnets containing several additional nodes,
which do not need to be shown here (since they are not important in this context and
would cause unnecessary complexity).

This model can be used to predict defects in either of the following software devel
opment scenarios:

1. Adding new functionality to existing code and/or documentation
2. Creating new software from scratch (when no previous code and/or documentation

exists).

The model in Figure 1 represents a single phase of software development that is
made up of one or more of the following activities:

• specification/documentation,
• development (coding),
• testing and rework.

Such single phase models can be linked together to form a chain of phases which
indicate major increments (milestone) in the whole project. This is the reason why in
MODIST tliis model is called "phase-based defect prediction model". In this way we
can model any software development Ufecycle. More on modelling various lifecycles
can be found in [3].

In common with many BN models this model contains a mixture of nodes that are
qualitative (and are measured on a ranked scale) such as "Overall management qual
ity" and nodes that are numeric, such as defects found and KLOC. Because generally
BNs require numeric nodes to be discretised even if they represent continuous vari
ables there is an inevitable problem of inaccuracy because a set of fixed intervals has
to be defined in advance. To improve accuracy in predictions we have to split the
whole range of possible values for a particular node into a larger number of intervals.
The more inteivals we have, the longer the calculation time - (since this includes gen
erating the node probability table (NPT) from an expression in many cases). It is not
simply a question of getting the right 'ti'ade-off because in many cases we need to as
sume an infinite scale for which, of course, there can never be a satisfactory discreti
sation.

One proposed solution to the problem has been to minimize the number of inter
vals by more heavily discretising in areas of expected higher probability, using wider
intervals in other cases. This approach fails in a situation when we do not know in ad
vance which values are more likely to occur. Such a situation is inevitable if we seek
to use the models for projects beyond their original scope.

Table 1 illustrates node states in the MODIST model for two nodes describing size
of the new software: "New Functionality" and "KLOC". Notice that there are several
intervals where the ending value is around 50% or more higher than the starting value.
The model cannot differentiate if we enter as an observation a starting, ending value
or any other value between them. They are all treated as the same observation - mid
dle of the interval.

www.manaraa.com

142 Norman Fenton, Lukasz Radlwski, Martin Neil

There were two main reasons for defining such node states:

1. Availability of empirical data that the model was later validated against
2. Calculation time which was acceptable for the number of states.

The node "KLOC" contains intervals with high differences between starting and
ending values. But those high differences are for values below 15 KLOC and over
200 KLOC (it was assumed that the KLOC in a single phase would never outside
these boundaries). Hence, we can expect that predictions for software size between 15
and 200 KLOC will be more accurate than outside this range.

Table 1. Node for "New Functionality" and "KLOC"

New Functionality

Start

0

25

50

75

100

125

150

200

299

400

500

750

1000

1500

2000

3000

5000

8000

12001

16000

20000

End

24

49

74

99

124

149

199

298

399

499

749

999

1499

1999

2999

4999

7999

12000

15999

19999

30000

Interval
Size

25

25

25

25

25

25

50

99

101

100

250

250

500

500

1000

2000

3000

4001

3999

4000

10001

Percentage
Difference

Between Starting
and Ending

Values

-

100,0%
50,0%
33,3%

25,0%

20,0%

33,3%

49,5%

33,8%

25,0%

50,0%

33,3%

50,0%
33,3%

50,0%

66,7%

60,0%
50,0%

33,3%

25,0%

50,0%

KLOC (new)

Start

0

0,5

1

2

5

10

i5
20

25

30

40

50

60

80

100

125

150

175

200

300

500

End

0,5

1

2

5

10

15

20

25

30

40

50

60

80

100

125

150

175

200

300

500

10000

Interval
Size

0,5

0,5

1

3

5

5

5

5

5

10

10

10

20

20

25

25

25

25

100

200

9500

Percentage
Difference

Between Starting
and Ending

Values

-

100,0%

100,0%

150,0%

100,0%
50,0%

33,3%

25,0%

20,0%

33,3%

25,0%

20,0%

33,3%

25,0%

25,0%

20,0%

16,7%

14,3%

50,0%

66,7%

1900,0%

For the "new functionality" node we cannot find any range of intervals with rela
tively low differences between lower and upper bound in an interval. This means that
we will have relatively inaccurate predictions for most software size expressed in
function points.

www.manaraa.com

Improved Bayesian Networks for Software Project Risk Assessment 143

The defect prediction model contains several variables for predicting different
types of defects. Most of them have similar states in terms both the number of states
and their ranges. Table 2 illustrates intervals for one of them: "defects found".

Table 2. Node states for "defects found"

Defects fouad

Start

1

5

20

40

60

80

100

125

150

175

200

250

300

350

400

450

500

750

1000

End

4

19

39

59

79

99

124

149

174

199

249

299

349

399

449

499

749

999

1499

Interval
Size

4

15

20

20

20

20

25

25

25

25

50

50

50

50

50

50

250

250

500

Percentage
Difference

Between Starting
and Ending

Values

400,0%

300,0%

100,0%
50,0%

33,3%

25,0%

25,0%

20,0%

16,7%

14,3%

25,0%

20,0%

16,7%

14,3%

12,5%

11,1%

50,0%
33,3%

50,0%

Defects found (cont.)

Start

1500

2001

3001

4001

5001

6001

7001

8001

9001

10001

11001

12001

13001

14001

15001

16001

17001

18001

19001

End

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

17000

18000

19000

20000

Interval
Size

501

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

Percentage
Difference

Between Starting
and Ending

Values

33,4%

50,0%
33,3%

25,0%

20,0%

16,7%

14,3%

12,5%

11,1%

10,0%

9,1%

8,3%

7,7%

7,1%

6,7%

6,2%

5,9%

5,6%

5,3%

3 Dynamic discretisation algorithm

The dynamic discretisation algorithm [5, 7] was developed as a way to solve the
problems discussed in the previous section. The general outline of it is as follows:

1. Calculate the current marginal probability distribution for a node given its current
discretisation.

2. Split that discrete state with the highest entropy error into two equally sized states.
3. Repeat steps 1 and 2 until converged or error level is acceptable.
4. Repeat steps 1, 2 and 3 for all nodes in the BN.

www.manaraa.com

144 Norman Fenton, Litkasz Radlinski, Martin Neil

The algorithm has now been implemented in the AgenaRisk toolset [1]. Using this
toolset we can simply set a numeric node as a simulation node without having to
worry about defining intervals (it is sufficient to define a single interval [x, y] for any
variable that is bounded below by x and above by y, while for infinite bounds we only
need introduce one extra interval).

In the AgenaRisk tool we can specify the following simulation parameters:

- maximum number of iterations - this value defines how many iterations will be
performed at maximum during calculation; it directly influences the number of in
tervals that will be created by the algorithm and thus calculation time,

- simulation convergence - the difference between the entropy error value between
subsequent iterations; the lower convergence we set, the more accurate resuhs we
will have at the cost of computation time,

- sample size for ranked nodes - the higher value here reduces probabilities in tails
for ranked node distributions at the cost of longer NPT generation process [1].

"Simulation convergence" can be set both as global parameter for all simulation
nodes in the model or individually for selected nodes. In the second case the value of
the parameter for a selected node overrides the global value for the whole model. If it
is not set for individual nodes the global value is taken for calculation.

Currently there is no possibility to set the "maximum number of iterations" for a
particular node. All nodes in a model use the global setting. This causes the same
number of ranges to be generated by the dynamic discretisation algorithm for all
simulation nodes in most of the cases. We cannot expect more intervals generated for
selected nodes resulting in more accurate prediction there.

4 Revised software project risk models

Table 3 illustrates differences between node types for numeric nodes in the original
and revised models.

We do not present number of states for numeric nodes in the revised model be
cause they are not fixed. They rather depend on simulation parameters which are set
by users.

In our model all numeric nodes are bound (do not have negative or positive infin
ity), so we set a single interval for those nodes.

www.manaraa.com

Improved Bayesian Networks for Software Project Risk Assessment 145

Table 3. Numeric node types

Node

Prob avoiding spec defects

KLOC (new)
Total number of inputs and
outputs
Number of distinct GUI
screens
New functionality imple
mented this phase
Inherent potential defects
from poor spec
Inherent pot defects (indep.
of spec)
Pot defects given spec and
documentation adequacy
Total pot defects

New defects in

Total defects in

Defects found

Defects fixed

Residual defects pre

Residual defects post
Prob of avoiding defect in
dev
Prob of finding defect

Prob of fixing defect

in original and revised models

Original model

Type
of Interval

Continuous

Continuous

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Continuous

Continuous

Continuous

Simulation

No

No

No

No

No

No

No

No

No

' No

No

No

No

No

No

No

No

No

Number
of states

7

21

5

5

21

25

25

26

26

24

38

38

39

38

38

5

5

5

Revised model

Type
of Interval

Continuous

Continuous

Integer

Integer

Continuous

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Continuous

Continuous

Continuous

Simulation

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

5 Comparison of results

All calculations have been performed on a computer with Pentium M 1.8 GHz Proc
essor and 1 GB RAM under MS Windows XP Professional using AgenaRisk ver.
4.0.4. We ran calculations for the revised model using two values of parameter
"maximum number of iterations": 10 and 25. We compared achieved results with the
results achieved with the original model.

We observed very significant changes in predicted values for the revised and origi
nal model. Those differences varied among nodes and scenarios. Most of the pre
dicted means and medians were significantly lower in the revised model than in the
original (the range of those differences was from -3% to -80%). This result fixed a
consistent bias that we found empirically when we ran the models outside the scope

www.manaraa.com

146 Norman Fenton, Litkasz Radlinski, Martin Neil

of the MODIST project. Specifically, what was happening was that previously, out
side the original scope, we were finding some probability mass in the end intervals.
For example, an end interval like [10,000-infmity] might have a small probability
mass, which without dynamic discretisation, will bias the central tendency statistics
like the mean upwards. Only in a few cases did we observe an increase in predicted
values. In all of them the differences were small - the highest was around 40%, but
most of them did not reach 10%.

We could also observe a decrease in standard deviation for predicted distributions
(from -8%) to -80%). Partly this is explained by the model no longer suffering from
the 'end interval' problem that also skewed the measures of central tendancy How
ever, another reason is that dynamic discretisation fixes the problem whereby nodes
that are defined by simple arithmetic functions had urmecessary variability intro
duced. For example, nodes like 'total potential defects', 'total defect in', 'residual de
fects post' no longer suffer from inaccuracies due entirely to discretisation eiTors af
fecting addition/subtraction.

Probability

0.50 -,

• - • - • Original

• Revised (max
iterations~10)

"Revised (max
iterations=25)

Originai:
Mean=667.84
Median=538.2
SD=711.55

Revised
(max iterations^lO):
M8an=179,13
M6dian=117,8B
SD=248,66

Revised
(max iterationssa25):
Mean=161,43
Medlan=103,67
SD=230.35

2000 Function Points

Fig. 2. Comparison of probability distributions for "residual defects post" for original and re
vised models for selected scenario

The dynamic discretisation algorithm creates node states in such way as to have
narrow intervals within the area of highest probabilities and wide intervals where the
probabilities are low (Fig. 2). This ensures greater accuracy for predicted values.

The number of intervals created for simulation nodes depends mainly on the pa
rameter "maximum number of iterations". Figure 2 illustrates this. We can observe
that in the areas of higher probability more intervals have been created.

www.manaraa.com

Improved Bayesian Networks for Software Project Risk Assessment Ul

Node states are fixed for the nodes not marked as simulation nodes. They do not
change according to predicted values for those nodes.

We can observe that predicted values for the node "residual defects post" de
creased significantly using the model with simulation nodes compared to the original.
This occurred for both tested values of "maximum number of iterations". Predicted
values for this node in both cases in the revised model were very similar (Fig. 2). Om-
results show this was also true in other scenarios and for other nodes.

Table 4. Comparison of calculation times for selected scenarios in original and revised model

Model

Original

Revised
(Maximum number
of iterations = 10)
Revised
(Maximum number
of iterations = 25)

Time
(in minutes)

Average

0:13.1

0:18.7

2:03.1

Shortest

0:11.1

0:15.7

1:34.8

Percentage difference
in calculation times

(compared to original model)

Average

-

42.8%

839.0%

Shortest

-

41.4%

754.5%

We can observe the great difference between different settings of "maximum num
ber of iterations" in calculation times (Table 4). When we compared calculation times
for the revised model setting "maximum number of iterations" to 10 with the original
model, we could observe that they increased by just over 40%. Although it was a sig
nificant increase in many cases it would make no real difference for end user.

However, calculation times increased very significantly when we set this parameter
to 25 - around 8 times longer than in the original model. In this case we get only
slightly more accurate predictions, so we must decide if much longer calculations can
be compensated by only slightly higher precision.

The latest version of AgenaRisk (which we received just before finishing this re
search) contains optimizations to the algorithm which result in the times presented in
Table 4 being generally halved. However, we cannot present precise information
about as we were unable to perform extensive testing of the new algorithm.

6 Summary and future work

Results of our research have led us to the following conclusions:

1. Providing that we set a suitable value for the parameter "maximum number of it
erations" the dynamic discretisation algorithm ensures greater accuracy of pre
dicted values for simulation nodes than for nodes with fixed states.

2. Changing numeric node types to simulation nodes caused significant decrease in
predicted "number of defects" and standard deviation (in several nodes). This re-

www.manaraa.com

148 Norman Fenton, Lukasz Radlinski, Martin Neil

suit fixed a consistent (pessimistic) bias we had found empirically in projects out
side the scope of MODIST.

3. Applying the dynamic discretisation algorithm does not force model builders to de
fine node states at the time of creation of the model. This is a very usefiil feature
especially in those cases when we do not know in advance in which ranges we
should expect higher probabilities.

4. We can mix simulation and traditional nodes in a single model. We can define
fixed node states for some of the nodes while setting others as simulation.

5. The cost of increased accxiracy and model building simplicity that comes with dy
namic discretisation is increased calculation timebut these increases are insignifi
cant for values which still provide significant increases in accuracy..

Applying dynamic discretisation to the defect prediction model was one of a num
ber of improvements we plan for the MODIST models. The next step will be to build
an integrated model from the existing two developed in the MODIST project:

- defect prediction model,
- project level model (that contains, for example, resource information)

We also plan to apply dynamic discretisation to this integrated model and to extend
it by incorporating other factors influencing the software development process.

References

1. Agena, AgenaRisk User Manual, 2005
2. Agena, Software Project Risk Models Manual, Ver. 01.00, 2004
3. Fenton N., Neil M., Marsh W., Hearty P., Krause P., Mishra R. Predicting Software Defects

in Varying Development Lifecycles using Bayesian Nets, to appear Information and Soft
ware Technology, 2006

4. MODIST BN models, http://www.modist.org.uk/docs/modist_bn_models.pdf
5. Neil M., Tailor M., Marquez D., Bayesian statistical inference using dynamic discretisation,

RADAR Technical Report, 2005
6. Neil M., Tailor M., Marquez D., Fenton N., Hearty P., Modelling Dependable Systems us

ing Hybrid Bayesian Networks, Proc. of First International Conference on Availability, Re
liability and Security (ARES 2006), 20-22 April 2006, Vienna, Austria

7. Neil M., Tailor M., Marquez D., Inference in Hybrid Bayesian Networks using dynamic dis
cretisation, RADAR Technical Report, 2005

www.manaraa.com

Software Risk Management: a Process Model and a Tool

Tereza G. Kirner', Lourdes E. Gon9alves'

Graduate Program in Computer Science
Methodist University of Piracicaba - SP, Brasil
tgkimer@unimep.br; IgoncaIves@unasp.edu.br

Abstract. This paper is concerned with the risks associated with the software
development process. A model {GRisk-Model) is proposed for the management
of such risks and a software tool (GRisk-Tool), developed to support the model,
is described. Both the method and the tool were created with the participation of
senior managers and software engineers of software factories. The model and
the tool serve as effective instruments for achieving the continuous improve
ment of software processes and products.

1 Introduction

Several approaches of software risk management have been proposed and used since
Boehm [1], [2] and Charette [4], [5] introduced the topic and its importance in the
sofhvare engineering context. However, despite of several studies and experiences
published about risk management, the software industry, in a general way, does not
seem to follow a model to analyze and control the risks through the development of
their products.

This article comprises two objectives. The first one is to present a model of risk
management process (GRisk-Model), that covers all the stages of the software devel
opment process. The second is to present a tool (GRisk-Tool) that supports this model.
The GRisk-Model was proposed with basis on the literature and from the experience
of managers and senior software engineers of Brazilian software factories. The GRisk-
Tool implements the proposed risk management model and also was evaluated by
professionals, with respect to its functional aspects and obtained benefits.

Section 2 points out the theoretical basis that has supported the proposal of the
model and the construction of the tool. Section 3 details the GRisk-Model and section
4 presents the GRisk-Tool. Section 5 presents the conclusions, stressing the potentiali
ties, limitations and future directions of the work.

2 Related Work

Risk has to do with any variable that can lead to the failure of the project. Generally,
risk can include problems related to deadlines, requirements, budget and staff [9].

Please use the following formatwhen citing this chapter:

Kimer, T.G., Con§alves, L.E., 2006, in IFIP International Federation for Information Processing, Volume 227, Software

Engineering Techniques: Design for Quality, e d K. Sacha, (Boston: Springer), pp. 149-154.

www.manaraa.com

150 Tereza G. Kimer, Loiirdes E. Gon^alves

According to Pressman [10], there is a considerable debate regarding the accurate
definition of software risk, but there is a consensus that risk always involves two
characteristics: (a) Uncertainty, which means that an event that characterizes the risk
can either happen or not, that is, there is not 100% of probability of the risk to occur-,
(b) Loss, which means that, if the risk becomes a reality, undesirable consequences
will occur involving damages to the product in question.

Risk management comprises a systematic approach of evaluating the risks related
to the software development process. A typical risk management model involves the
identification and analysis of the potential risks of a project and, moreover, the adop
tion of monitoring strategies for reducing these risks.

One of the precursors of the area of risk management is Barry Boehm who, in
1988, proposed the Spiral Model that incorporates successive analyses of risks along
the software development stages [1]. Later, this same author defined the risk man
agement as a process composed of two phases: (a) Risk evaluation, that includes the
identification of the risk, the analysis of the risk, and the prioritization of the risk, (b)
Control of the risk, that includes a plan of risk management, the resolution of risks,
and the monitoring of the risks [3]. Another well known model of risk management is
the RISICIT [11], that incorporates a similar process to that proposed by Boehm [3],
including the following stages: (a) definition of a risk management program; (b) re
view of the objectives of the project; (c) identification of the risks; (d) analysis of the
risk; (e) planning of the risk control; (f) control over the risks; (g) monitoring of the
risks.

The benefits propitiated by the tools that assist in the software development, as
CASE tools, prototyping tools, etc., are unquestionable. Among these tools destined
to support the risk management, discussed in the literature, ARMOR [8] and SERIM
[7] tools are distinguished.

ARMOR (Analyzer for Reducing Module Operational Risk) aims to detect and
evaluate software risks, based, mainly, on statistical models. The execution of the tool
includes a series of functions, which make possible to: access the data that are perti
nent to the characteristics of software; use and evaluate metrics applied to the soft
ware product; evaluate risks of performance; identify, validate, calculate and present
the risks related to each software module, including indication of actions for the risk
reduction. SERIM (Software Engineering of Risk Management) supports the identifi
cation of a reliable process for software development, based on the identification of
the potential risks and the stages and activities of the project that need a more accurate
attention. After identifying the risks, the tool assists the elaboration of plans for
minimizing the latent risks, including since the identification of risks related to the
system implementation until the involved costs and the defined deadlines.

3 Risk IVIanagement IModel

The definition of the GRisk-Model counted on the participation of a team of profes
sionals composed of 1 commercial manager, 1 manager of software factory, 3 coordi
nators of software factories, and 3 senior system analysts. For the stages, phases and
activities of the software development, descriptions have been prepared and indicated

www.manaraa.com

Software Risk Management: a Process Model and a Tool 151

the classes and the risks associated to those. Periodically, meetings were held in
which the group came up with an evaluation of the classes and the risks indicated for
each phase and activity. At the end of the work, forms for analysis of the proposed
structure were filled up tlirough which the professionals of the work team informed
their evaluation and contribution to the model.

Figure 1 illustrates the G-Risk Model phases, which occur in parallel to the soft
ware life cycle. In the model, the phases are subdivided in activities and both are de
fined. For each set of phase/activity, the risks, divided in their respective classses, are
related.

SOFTWARE
DEVELOPMENT

PROCESS

Requirements
Engineering

Design

I
Coding

Testing

I
Implantation

Operation and
Maintenance

G-RISK MODEL

Substitution

< :

Risk Identification

Risk Analysis

i k

Risk Prioritization

1 r

k

Risk Criticality
Determination

1

k

Risk Connol

<-

«-J

Fig. 1. Overview of the GRisk-Model

The classes of risk adopted in the model include:

Relationship Risks (RR). They are risks that involve the interactions between de
velopers and users, and between different types of users, concerning the definition
of system functionality.
Organizational Risks (OR). They are risks that involve organizational changes that
affect the system under development as, for example, organization charts altera
tions, changes in the user's area, dismissal of professionals responsible for the sys
tem, etc.
Management Risks (MR). They are risks that involve the management of the sys
tem development, such as: definition of development methodologies, definition of
professionals who will compose the work team; definition of the necessary devel
opment environment; definition of resources for the development; etc.

www.manaraa.com

152 Tereza G. Kirner, Lourdes E. Gongahes

• Financial Risks (FR). They are risks that cause financial expenses beyond the
planned one, including high values of proposals, cost of equipments, etc.

• Technical Risks (TR). It is a broad class of risks, which can be caused by the pro
fessionals' lack of experience, use of inadequate methodologies and techniques,
etc.

• Legal Risks (LR). They are risks related to laws, such as fiscal requirements, li
censes for software, changes of tax laws dtiring or after the system development,
etc.

As part of the GRisk-Model, a list of probable risks, for each phase of the software
development was defined [6]. These risks were identified with basis on bibliographi
cal studies and also considering the experience and suggestions of the professional
team who participated in the work.

So that the risks can be controlled and monitored, the impact that these risks will
be able to cause in the project development and to the expected product must be de
termined. The degree of risk impact, may it be high, medium or low, will have to be
analyzed, considering the probability of occurrence of the risk. The higher the prob
ability of occurrence of the risk and its degree of impact, the greater is the control and
monitoring it will have to receive [3].

4 Risk Management Tool

The Risk Management Tool (GRisk-Tool) has two objectives. The first objective is
the creation of a knowledge base, with information obtained from the GRisk-Model,
that will be used in the management of risks of future projects. The second objective
is the compiling, follow-up and control of occurrence of risks, identified along the de
velopment of new projects. The compiling of the risks makes possible to keep the
knowledge base updated, as well as to generate information to define metrics concern
ing to significant impacts for the identified risks.

Figure 2 gives an overview of the tool, which includes the following modules:

• Creation of knowledge base. In this module, the information, already classified in
phases and activities of the software development, is loaded in the files.

• Control of risk management. In this module, the information of occurrences of risk
identified in the software development process is registered.

• Monitoring and control of risks. This module makes available to the user the regis
ter of monitoring carried through a determined risk occurrence,

• Maintenance of knowledge base. In this module, the knowledge base is updated
through the registering of risk occurrences.

• Reports and consultations. This module makes available to the user a series of re
ports and consultations related to the knowledge base contents, risk management,
and occurrences about the risk monitoring.

The GRisk-Tool was evaluated by six software engineering professionals, including
1 manager of software factory, 3 project managers and 2 senior system analysts. Two
of them had participated of the GRisk-Model definition and the other ones did not

www.manaraa.com

Software Risk Management: a Process Model and a Tool 153

know the model and the tool. These professionals were invited to participate of the
evaluation, in function of their experience on software project management, specifi
cally on risk management.

The tool works on personal computer environment, under Windows operational
system (see [6], for a complete description of implementation issues). It was set free
for use by the software development team of the software factories that participated of
its development. It is being used together with the software development methodol
ogy, aiming at the optimization of the software production, in terms of deadlines,
costs, and quality.

Creation of
* Knowledge

Basis

z
KNOWLEDGE

BASIS ^

Maintenance
of Knowledge

Basis

Risk
Control

Risk
Monitoring

Reports and
Consults

Fig. 2. Overview of the GRisk-Tool

5 Conclusion

This article presented a process model of risk management {GRisk-Model) and a tool
{GRisk-Tool). The GRisk-Model was developed with basis on the literature, also get
ting the experience and effective participation of directors, managers and senior soft
ware engineers of Brazilian software factories. The GRisk-Tool implements the risk
management model and the professional team involved in the definition of this model
also evaluated it.

The GRisk-Model is characterized by incorporating a knowledge base concerning
the software development process. The GRisk-Tool supports this model, as well as it
offers conditions so that the knowledge base created can be continuously updated and
extended with information of new risks related to projects monitored by the tool.

www.manaraa.com

154 Tereza G. Kirner, Lourdes E. Gongahes

A very important result from the use of the GRisk-Tool is to detect potential prob
lems in the software development phases, as well as the impacts and the costs related
to such problems. It is possible to get the mapping of these problems from a script of
actions to be taken, containing a set of information on different classes of risks related
to all stages and activities of the software development, as is shown in the GRisk-
Model.

As the impact of the risks is determined for each project, it is expected that, with
the descriptions included in the tool, metrics can be obtained for determining stan
dards to be applied to the risk impacts. Such metrics and standards have been gradu
ally incorporated in the model and the tool.

It is also expected that the GRisk-Tool work as an additional mechanism to assist
the software development in the company. The tool offers to the risk management a
list of actions to be taken in all stages of software development, thus preventing that
the responsible professionals need more accurate knowledge on the subject. With the
dynamic updating of the knowledge base, this characteristic becomes an essential fac
tor for the risk management and the success of the project being developed.

Now, some experiments are being conducted, focusing on the use of the model and
of tool, in the development of new software projects, in the software factories. It is
expected these experiments will provide important information for the improvement
and extension of the GRisk-Model and the GRisk-Tool.

References

1. Boehm, B.W. "A Spiral Model of Software Development and Enhancement", IEEE Com
puter, Volume 21, Number 5, May 1988, pp. 61-72.

2. Boehm, B.W. Tutorial: Software Risk Management, IEEE Computer Society Press, New
York, 1989.

3. Boehm, B.W. "Software Risk Management: Principles and Practices", IEEE Software, Vol
ume 8, Number 1, January 1991, pp. 32-41.

4. Charette, R.N. Software Engineering Risk Analysis and Management, McGraw-Hill New
York, 1989.

5. Charette, R.N. "Large-Scale Project Management is Risk Management", IEEE Software,
Volume 13, Number 4, July 1996, pp. 110-117,

6. Gonfalves, E.L. Risk Management in the Software Development Process, Master Disserta
tion, Methodist University of Piraoicaba, 2006 (in Portuguese).

7. Karolak, D.W. Software Engineering Risk Afowagement, Wiley-IEEE Computer Society
Press, Los Alamitos, CA, 2002.

8. Lyu, M.R, Yu, J.S, Keromidas, E., Dalai, S. "ARMOR: Analyser for Reducing Module Op
erational Risk", 25th Symposium on Fault-Tolerant Computing, IEEE Computer Society
Press, Los Alamitos, CA, 1995, pp. 137-142.

9. Padayachee, K. "An Interpretative Study of Software Risk Management Perspectives",
SAICSIT 2002, South Africa, 2002, pp. 118-127.

10. Pressman, R.S. Software Engineering - A Practitioner's Approach, 4th edition, McGraw-
Hill, New York, 1997.

www.manaraa.com

An Approach to Software Quality Specification and
Evaluation (SPoQE)*

Iwona Dubielewicz*, Bogumila Hnatkowska', Zbigniew Huzar',
Lech Tuzinkiewicz'

'institute of Applied Informatics, Wroclaw University of Technology,
Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland

{Iwona.Dubielewicz, Bogumila.Hnatkowska, Zbigniew.Huzar,
Lech.Tuzinkiewicz} @pwr. wroc.pl

Abstract. The paper discusses how to carry evaluation of software product
quality within software development process. The evaluation process bases on a
quality model being an instance of a quality model. Quality model, elaborated
basing on ISO quality standards, may be used both for specification of quality
requirements and quality assessment. The evaluation process is presented in
terms of activity diagrams. It is generic and may be concretized for two perspe
ctives of software product quality, i.e. external, and internal quality. Simple ex
ample illustrates the proposed approach.

1 Introduction

Quality of a software product can be defined as a totality of characteristics that bear
on its ability to satisfy stated and implied customer needs [5].

The meaning of the term "software product" is extended to include any artifact,
which is the output of any process used to build the final software product. Examples
of a product include, but are not limited to, an entire system requirements specifi
cation, a software requirements specification for a software component of a system, a
design module, code, test documentation, or reports produced as a result of quality
analysis tasks [10].

The aim of the paper is to elaborate a generic process of software product evalua
tion based on current ISO standards, relating to Software Quality Assurance (SQA).
The process is independent fi'om specific software development methodology, and
shall ensure software product compliance with quality requirements, moreover with
required level of this quality.

SQA processes provide assurance that software products and processes in the pro
ject life cycle conform to their specified requirements by planning, enacting, and per
forming a set of activities to provide adequate confidence that quality is being built
into the software [10].

' The work was supported by polish Ministry of Science and Higher Education under the grant
number 3 TllC 06430.

Phase use the foil owing format when citing this chapter:

Dubielewicz, I., Hnatkowska, B., Huzar, Z., TuzLnkiewicz, L., 2006, in IFIP International Federation for Information

Processing, Volume 227, Software Engineering Techniques: Design for Quality, ed. K. Sacha, (Boston: Springer), pp.

www.manaraa.com

156 Jwona Dyhielewrcz, Bogumila Hnatkowska, Zbrgniew Hiizar, Lech Tuzinkrewicz

ISO Standard [3] provides a new supporting process called Product evaluation. The
process is defined in informal way. The paper formalizes Product evaluation process
and presents it in the form of activity diagrams. The diagrams, expressed in SPEM
notation [9], include roles of stakeholders of software process development, and arti
facts related to SQA. Considered activities are based on ISO standard [4], while arti
facts are instances of our Software Quality Model of Requirement, Evaluation and
Assessment (SQMREA) [6]. The fact that ISO quality models are instances of
SQMREA explains why we have called SQMREA in [6] to be a quality meta-model.

The paper is organized as follows. Section 2 gives an overview of software quality
generic model. In Section 3 our formalization of evaluation process is given. Section
4, on the base of a simple example, explains how the evaluation process may be in
stantiated. Finally, Section 5 discusses presented proposals and compares them to cur
rent literature.

2 Generic model of software quality requirements evaluation and
assessment

Our proposal of software quality generic model for requirement, evaluation, and as
sessment, called SQMREA, is shown in Figure 1. This is an extended version of the
model, presented in [6]. The model is presented as UML class diagram with a set of
OCL constraints (omitted in this paper).

The reason of SQMREA introduction is to enable evaluation and assessment of
quality levels of inteimediate artifacts produced during software development as mo
dels, specifications etc., and, finally, the resulting software product.

In general, according to ISO standards, quality assessment can be done from three
perspectives: external, internal, and in use perspective. The last perspective relates not
only to a software product itself but also to its operation in a specific environment and
specific context of use. Therefore, our SQMREA model takes into account only the
first two perspectives, which concern only a software product. The external perspecti
ve represents a viewpoint of a user, while the internal perspective represents a view
point of a software developer.

The choice of quality perspective plays the key role in model instantiation. Each
perspective determines a quality model, i.e. the set of selected characteristics and rela
tionships between them. Instances of the generic model embrace not only ISO quality
models for a given perspective, but also other models that are different from ISO
quality models, for example, dependability models based on lEC 300 series of stan
dards [10]. In the sequel, for the sake of brevity, we confine our consideration to ISO
quality models.

To do description of the SQMREA generic model more readable, we have grouped
its elements into four packages that are presented in Figure 2.

Two central packages relate to elements of quality model, and software requi
rements respectively. The right side package relates to subjects of quality assessment,
while the left side one defines how to do the assessment.

We start with description of the package Elements of Quality Requirement Speci
fication, as comprehensive requirement specification is a starting point both to devel-

www.manaraa.com

An Approach to Software Quality Specification and Evaluation (SPoQE) 157

opment process of a software product and to its quality requirement specification and
evaluation. This specification is based on user needs that are informal by nature. The
needs serve as the basis for the formulation of requirements. A requirement is defined
as a condition or feature required by user to solve a problem or to reach specific goal
[10]. The requirements should be expressed quantitatively through referring to values
of software product attributes, i.e. measurable physical or abstract properties of the
product.

Software Product, Artifact Specification, Need, and Requirement classes are abstra
ctions concerning software quality requirements. Their instances are specific for a gi
ven software product. An instance of Software Product class can be associated with a
set of instances of Artifact Specification class. In our considerations, we abstract from
semantics of instances of Artifact Specification, and we concentrate only on asso
ciations between this class and other classes. The association to Artifact Implemen
tation class reflects obvious relationship between specification and implementation -
specification of an artifact may have many implementations. The association to Re
quirement class (a requirement may be decomposed into other requirements) reflects
the fact that artifact implementations will be eventually evaluated in context of some
requirements. The association to Attribute class points the attributes that are involved
in artifact specification and should be also present in artifact implementation.

ArtifactQualityLevel Artifacts pecification
Artifactlmplementation

0..*
MetricEvaluatton

Subjects of Quality i
Assessment

Fig. 1. SQMREA generic model

Perspectives of Quality
Assessment

+ ArtifactQualityLevel
+ AssessType

• Characteristic QualityLevel
+ MetricQualltyLevel

+ QualityLevel
+ RequirementQualityLevel

+ SPQualityLevel

Elements of
Quality Model

+ Attribute
+ Characteristic

+ Metric
+ Quality

Elements of Requirement
Specification

+ ArtifactSpecification
+ Need

+ Requirement
+ SoftwareProduct

Subjects of Quality
Assessment

+ Artlfactlmpiementafion
+ AttributeValue

+ MetricEvaluation

Fig. 2, Elements of main parts of SQMREA model

www.manaraa.com

158 JwonaDyhielewicz, BogumilaHnatkoM'ska, Zbigniew Hiizar, Lech Tiizinkiewicz

To do quality requirements measurable the classes of Elements of Requirement
Specification package are associated with classes of the package Elements of Quality
Model. The main elements of this package are: Quality, Characteristic, Metric, and
Attribute classes. An instance of Quality class is a root of a hierarchy of characteris
tics and sub-characteristics, and represents a given quality perspective. Standard [1]
defines the foUow îng characteristics for internal and external quality models: func
tionality, reliability, usability, efficiency, maintainability and portability. These char
acteristics may be subdivided into multiple levels of sub-characteristics. For example,
according to this standard, there are the following sub-characteristics for functional
ity: suitability, accuracy, interoperability, compliance and security. For an agreed
sub-characteristic a set of metrics as functions on attributes is given. Acceptable
ranges of the metrics specify recommended values of attributes.

A requirement may be decomposed into other requirements. The leaves of the re
quirement's tree are associated with metrics by Metric Quality Level association class.

The elements of the left side package Perspective of Quality Assessment supple
ment the package Elements of Requirement Specification by delivering functions that
assess quality levels for: (1) a requirement {Requirement Quality Level), (2) a charac
teristic {Characteristic Quality Level), (3) an artifact {Artifact Quality Level), and (4)
a whole software product {SP Quality Level). The mentioned classes (in braces) are
specializations of an abstract Quality Level class. Each specialization of Quality Level
class should provide its own assessment function {assessFun). The functions yield
values of Assess Type, i.e. non-acceptable, minimal, target or exceeding. These values
define quality of a given element (requirement, characteristic, single artifact, and fi
nally a software product, understood as a set of artifacts).

Assessment functions form a hierarchy of fimctions relating to requirements (the
lowest level), sub-characteristics, characteristics, artifacts and software product (the
highest level of the hierarchy). The elementary assessment relates to a given metric
for a given requirement {Metric Quality Level), and is represented by a respective as
sessFun function. The fimction classifies the set of possible values of a given metric
to one category of Assess Type. Other assessment functions are not elementary - they
are composed of assessment functions that are at lower hierarchy level.

The values of the assessment function for Metric Quality Level are arguments for
assessment functions of Requirement Quality Level. The values of the assessment
functions for Requirement Quality Level are arguments for others assessment fim
ctions, i.e. Characteristic Quality Level, and Artifact Quality Level. Assessment of the
whole software product {SP Quality Level) is done with regard to the results from arti
fact quality level assessments.

For example, assessment functions defined for z-level in hierarchy may take a form
as below:

aSS,eveHi){Xh X2, ..., X„) = min(ai'Sfeve/(/-l)(jCl), aSSievemiXl), ••; aSSlevel(i-l){x„)) (3 . 1)

where a55feve/(/-i)(JCit)e{Non-acceptable, Minimal, Target, Exceeding} for k= 1,..., n,
and the values are ordered linearly in the following way:

Non-acceptable < Minimal < Target < Exceeding

The composition may take different forms, for example, a given higher level as
sessment function may take a form of weighted sum of values that are results of lower
level assessment fimctions.

www.manaraa.com

An Approach to Software Quality Specification and Evaluation (SPoQE) 159

The package Subjects of Quality Assessment contains the classes that represent in
stances of artifacts (Artifact Implementation class), values of their attributes {Attribute
Value class), and metric evaluations {Metric Evaluation class), calculated based on at
tribute values.

3 Model of evaluation process

This section presents our formalization of product evaluation process, infonnally de
fined in ISO standard [4]. The formalization uses activity diagram for expressing arti
facts flow among different roles engaged within the process. Artifacts used within the
process are instances of our SQMREA model. Roles are selected from those, pro
posed in [11].

Model of software product evaluation process is presented in Figure 3.
As was mention in Section 2, the main elements of SQMREA model were divided

into four packages. The names of packages are used on the activity diagram as the
names of artifacts produced by different activities. This means that a given activity
yields all elements from the package. To simplify the picture only the outputs for ac
tivities are presented. The output of a given activity is also an input for the following
one.

System Analyst Quality Manager Quality Architect

Fig. 3. Model of software product evaluation process

The process starts with Preparing activity. This activity can take one of two forms
according to the quality perspective. In the case of external quality the activity is sub
stituted by Software Requirement Specification activity, and in the case of internal
quality - by Internal Requirement Specification activity, see Figure 4.

www.manaraa.com

160 Iwona Diibielewicz, Bogumila Hnatkowska, Zbigniew Huzar, Lech Tuzinkiewicz

During Software Requirement Specification activity system analyst should, first of
all, to determine the real purposes of the software. The purposes are expressed as
needs, and they are represented by instances of Need class in the activity diagram.
Needs are written informally, in natural language. Based on them system analyst iden
tifies kinds of output artifacts, elicits quality requirements, and associates artifacts
specifications with quality requirements.

c
z:

Software Requirement
Specification

Elements of Requirement
Specification

[first-cut]

Elements of Requirement
Specification

[definedl

^

External
perspective

" ^ ^ i : ^ .

/ Interna! Requirement ^
V Specification J

Elements of Requirement
Specification

[first-cut]

infernal
perspective

Fig. 4. Details for Preparing activity for external, and internal quality perspective

The requirements at that moment are described informally, what is marked by ob
ject-flow state called "first-cut". They take a fonn of system features. System feature
is defined as a general system service that is associated with fulfillment of one or
more needs [8]. ISO standard [4] introduces a term general requirement for system
features description. An example feature for a weapon control system can be defined
as: in the case of attack two independent authorizations are needed [8].

Based on general requirements system analyst decides what artifacts will be expec
ted to represent a software product from interesting quality perspective (it proposes
instances of Artifact Specification class). When external perspective is considered the
example artifacts may be: executable components, user manual, installation manual,
and so on.

Internal Requirement Specification aims with transforming external requirements
into internal ones that are associated with internal artifacts. The example internal arti
facts may be: software requirement specification, sof^are architecture document,
source code, and so on. Needs are omitted at this stage.

The most difficult is Quality Model Definition activity as it is responsible for trans
formation of informally defined, general requirements into formally defined require
ments. The main aim of this activity is to elaborate a quality model, expressed in
terms of characteristics, metrics, and attributes. These elements must be suitable for
interested quality perspective. Their association with not empty set of metrics formal
ly defines the leaves of requirement tree. Some identified attributes may contribute to
more than one requirement for a software product. Some of them may be mutually in
conflict, which must be resolved.

For each pair: requirement-metric an instance of Metric Quality Level class and an
instance of Metric Evaluation class are created. The assessment fimction for instances
of Metric Quality Level will be defined in the next activity, called Quality Level Defi
nition. The attribute obtained for instances of Metric Evaluation class will be filled in
Measurement activity.

www.manaraa.com

An Approach to Software Quality Specification and Evaluation (SPoQE) 161

Quality Level Definition activity yields assessment functions for elements which
quality we want to evaluate and assess. This activity is a complex one and can be de
composed, as it is shown in Figure 5. The activity is repeated for each considered qua
lity element we want to evaluate. First of all the assessment function for all pairs;
leaf-requirement—metric must be defined. Next, following assessment functions are
defined: for each leaf-requirement, for each artifact, and for the whole software prod
uct. Quality Manager may introduce (or may omit) definitions of assessment func
tions for selected characteristics firom quality model.

•K Metric Quality
Level Definition

Requirement Quality
Level Definitioi

Fig. 5. Details of Quality Level Definition activity

The last two activities in Figure 3 are deferred up to artifact implementations are
created. Measurement activity returns values of attributes used in metrics for any arti
fact implementation, and deriving firom attribute values metric evaluations for each
pair: leaf-requirement—^metiic. These evaluations are represented by obtained attrib
ute in Metric Evaluation class.

During Assessment activity assessment functions, defined in Quality Level Defini
tion activity are performed. Results of the functions are gathered in assessment report.

4 Example

Presented example deals with situation when at the beginning of the semester the
course timetable for students' courses contains some inconsistencies. The timetable is
prepared manually using data fi-om the given external database. So, the problem is
how to get feasible timetable within a given deadline. A software product, which sup
ports the problem solution, is expected.

The investigation performed by system analyst with administrative staff shows that
possible reasons of timetable incorrectness come from:

• incomplete or incorrect input data,
• no direct access to database,
• constraints received from teachers,
• temporary overloading of faculty staff at the beginning of the semester.

To resolve problem the following information needs are formulated:

• recording of teacher's constraints up to a given deadline,
• data relating to timetable should be accessible all time they are needed (*),
• preview of current assignments of lecturers and classrooms to courses during the

process of timetable preparation (*).

www.manaraa.com

162 Iwona Dyhielewrcz, Bogynirla Hnatkowska, Zbrgniew Huzar, Lech Tuzinkrewicz

To fulfill these needs requested software product should have the following features:

• system is accessible on demand,
• system enables reporting of current resource usage.

In further, we investigate an exemplaiy quality evaluation process conducted for
the needs marked by (*). Additionally, we restrict the example only to external per
spective of software product quality.

Activity 1: Software requirement specification
Input. User needs
Output: Requirements specification; it contains following requirements:

Rl) Some kinds of analytical reports are expected; the following two of them are
further considered:

Reportl - shows the vacancy of classrooms along weekdays
Report2 - shows preliminary timetable based on current assignments of lectur

ers and classrooms to courses
R2) Report presentation should take a format of pivot tables and pivot charts
R3) Data for reports are retrieved firom the external database
R4) System is accessible for use in any time when it is needed
R5) The expected software should be implemented on Microsoft platform.

Comment: The software fiinctionality is hmited to preparation of a set of
analytic reports to support current, manually conducted process of timetable
preparation.

Software Product (SP) will consists of two kinds of artifacts:
• Code: Resource Planning Reports system (RPR system)
• Documentation: User manual
The RPR system will operate in conjunction with:
- DBMS (MS SQL or Access)
• Excel

Activity 2: Quality model definition
Input: Requirement specification, list of artifacts, and ISO quality standards [1],

[2].
Output: Elements of quality model - presented in Table 1.

Table 1. Quality model for RPR system

Quality model
characteristic/
subcharacteristic

Functionality/
Suitability

Functionality/
Interoperability

Metric/
Metr icJD

Coverage/
Fsml

Data
exchangeability/
Fiml

Measurement formula & attributes

X=l-A/B
A-number of function incorrect or missing
B-number of function described in re
quirement specification
X=A/B
A-number of data formats exchanged suc-
cessfiiUy with other software
B-total number of data formats to be ex
changed

Tracing
for

Rl

R3

Assign
to

Code
Doc

Code

www.manaraa.com

An Approach to Software Quality Specification and Evaluation (SPoQE) 163

Usability/
Usability compli
ance

Reliability/
Reooverability

Functionality/
Interoperability

Usability
compliance/
Ucml

Availability/
Rrml

MS software
compliance/
Fim2

X=l-A/B
A-number of usability compliance, items
missing
B-total number usability compliance items
specified
X=A/B
A-total available cases of user successfiiUy
software use when attempt
B-total number of cases of user's attempt
to use software during observation time
X=A/B
A-number of Microsoft software products
being used
B-total number of used software products

R2

R4

R5

, Code
Doc

Code
Doc

Code

Activity 3: Quality level definition
Input: Quality model definition for RPR system
Output: During this activity the assessment functions for all elements from assess

ment perspective package are established. First, the metric quality level
assessment functions for any pair: requirement-metric are defined. They
are shown in Table 2.

Table 2. Definition of assessment function for metric quality level

Req.
Rl
R2
R3
R4
R5

Metric ID
Fsml
Ucml
Fiml
Rrml
Fim2

Assessment function definition
Mimmal>0.80; Target=1.0
Minimal>0.5; Target2:0.9
Minimal=0.9; Target=1.0
Non-acoeptable<0.5; Minimal<0.9; Target=0.9; Exceeding>0,9
Non-acceptable<0.8; Minimal<1.0; Target=1.0

We have assumed the assessment fiinctions for all quality levels are defined ac
cording to the formula (3.1). The only difference is the formula of an assessment
function for SPQualityLevel, and it is defined as follovi?s:

OSSsp-Ievel \?^Code,^Doc) ~

Non-acceptable Hxcode = Non-acceptable
Minimal if Xforfe = Minimal (4-1)
Target if ̂ COA = Target and XBOC S Minimal
Exceeding if ̂ corfe = Exceeding and X£,„c > Minimal

The assessment functions are accepted or given by user.

Activity 4: Measurement
Input: Code and documentation of RPR system.
Output: During this activity the measurement of software artifacts is performed.
The resuhing metric values are presented in Table 3.

Table 3. Examples of performed measurements for metric level

Metric_ID

Fsml

Metric

coverage

Obtained metric values
Code

X = 0.85
Documentation

X = 0.4

www.manaraa.com

164 Iwona Diibielewicz, Bogitmila Hnatkowska, Zbigniew Huzar, Lech Tuzinkiewicz

Ucml
Fiml
Rrml
Fim2

usability compliance
data exchangeability
availability
MS software compliance

X = 0.9
X=l

X = 0.6
X=l

X = 0.8
n/a

X=l
n/a

*n/a - not applicable
Comment. The measurement of SP is perfonned in user's environment

Activity 5: Assessment
Input: Results of activities 3 and 4
Output: Quality values for all levels

Using the assessment function (3.1) defined in clause 3, for each level of assess
ment there were obtained values given in tables 4-7. As each requirement has one as
sociated metric only, the results of quality values for requirement quality level are the
same as for metric quality level. The assessments are done independently on each
level for every artifact.

Table 4. Obtained quality values for metric and requirement quality level

Req

Rl
R2
R3
R4
R5

MetricJD

Fsml
Ucml
Fiml
Rrml
Fim2

Obtained quality values
Code

Minimal
Target
Target
Minimal
Target

Documentation
Non-acceptable
Minimal
n/a
Target
n/a

Table 5. Obtained quality values for sub-characteristic level

Sub-characteristic

Suitability
Interoperability

Usability compliance
Recoverability

MetricID

Fsml
Fiml
Fim2
Ucml
Rrml

Obtained quality values
Code

Minimal
Target

Target
Minimal

Documentation
Non-acceptable
n/a

Minimal
Exceeding

Table 6. Obtained quality values for characteristic level

Characteristic

Functionality
Usability
Reliability

Obtained quality value
Code

Minimal
Target

Minimal

Documentation
Non-acceptable

Minimal
Exceeding

Table 7. Obtained quality values for artifact level

Artifact
Code
Documentation

Obtained quality value
Minimal
Non-acceptable

www.manaraa.com

An Approach to Software Quality Specification and Evahation (SPoQE) 165

Final assessment of the RPR system quality is minimal according to (4.1) defini
tion of assessment ftmction for the software product.

5 Conclusions and related works

The paper formalizes and refines ISO standards relating to processes of quality
evaluation and assessment [5]. It systematizes notions used for quality specification.
The notions are elements of SQMREA model [6]. The developed SQMREA model is
general. It enables for instantiations of different kind of quality models, not only those
proposed by ISO. For example, it is possible instantiate the quality model for high de
pendable systems, which concentrates on such characteristics as: safety, security, us
ability, availability, and reliability [10]. In general, other existing quality models use
different notions, but they share the same structural elements (characteristics, sub-
characteristics and metrics).

The SQMREA model is our original contribution, while the model of evaluation
process is a refined and formalized version of the evaluation process, presented in the
series 14598 of ISO/IEC standardization documents. The new elements include defi
nition of roles, specification of artifacts, an assignment of artifacts to roles and activi
ties, performed by roles.

The paper also presents SPoQE methodology for software quality product evalu
ation and assessment. The methodology is defined in terms of SPEM notation [9], i.e.
roles performing some activities on a given set of artifacts. The SPoQE methodology
is independent trom a software development methodology provided that the methodo
logy distinguishes at least the following two processes, defined in [3]:

• system requirement analysis,
• software construction.

The activities of the proposed software product evaluation process conform to
those proposed in [4] with only one difference:

• measurement activity in [4] is proceeded with planning activity - we omit this ac
tivity as it is part of a management process.

The presented quality evaluation process can be considered as an important part of
Quality Control process within SQA. It can also be considered within CMM (fourth
level) [6] as part of quality management. The SPoQE methodology concentrates on
product evaluation only, and does not take into account evaluation of development
process. The knowledge about the results of evaluation enables to carry out some cor
rective actions, and in this way can positively influence the final quality of the soft
ware product.

We have not found another approach to software product evaluation based on ISO
standard [4].

It is evident that application of proposed method of product evaluation is labour-
consuming. The cost-benefits analysis was not the subject of our interests. It can, and
should be concern of further investigations as it is obvious that some trade-off be
tween evaluation effort and resulting quality of software product is expected.

www.manaraa.com

166 Iwona Dubielewicz, Bogumila HnatkoM'ska, Zbigniew Hiizar, Lech Tiizinkiewicz

In further research we are going to:

• apply and vahdate SpoQE methodology for industrial projects,
• develop a tool supporting evaluation and assessment of a software product accord

ing to SPoQE.

References

1. ISO/IEC 9621-1:2000, Software engineering - Product quality - Part 1: Quality model
2. ISO/IEC TR 9621-2:2002, Software engineering — Product quality - Part 2: External met

rics
3. ISO/IEC 12247:1995/Amd.l:2002,/H/or7«aft'oR technology — SofWare life cycle processes
4. ISO/IEC 14598-3:2000, Software engineering - Product evaluation - Part 3: Process for

developers
5. ISO/IEC 25000:2005, Software engineering - Software Product Quality Requirements and

Evaluation (SQuaRE) - Guide for SQuaRE
6. Dubielewicz I., Hnatkowska B., Huzar Z., Tuzinkiewicz L., Software Quality Metamodel

for Requirement, Evaluation and Assessment, ISIM'06 Conference, Prerov, 2006, Czech
Republic, Acta Mosis No. 105, pp. 115-122.

7. Jalote P., CMM in Practice: Process for Executing Software Projects at Infosys, Boston,
Addison-Wesley, 2000

8. Leffmgwell D., Widrig D., Zarz^dzanie wymaganiami, (in Polish) WNT, 2003
9. Software Process Engineering Metamodel Specification (SPEM), version 1.0, OMG 2002
10. SWEBOK, Guide to the Software Engineering Body of Knowledge, 2002
11. Unhelkar B., Process Quality Assurance for UML-Based Projects, Addison-Wesley, 2002

www.manaraa.com

Feedback from Users on a Software Product to
Improve Its Quality in Engineering Applications

Barbara Begier', Jacek WdowickP

' Institute of Control and Information Engineering, Poznan University of Technology,
PI. M. Sklodowskiej-Curie 5, 60-965 Poznan, Poland

^ Institute of Structural Engineering, Poznan University of Technology
ul. Piotrowo 5, 60-965 Poznan, Poland

Abstract. Users' involvement in a sofhvare process is one of strategies for
achieving an improvement of software quality. The described research is re-
fen-ed to the software system applied in civil engineering. The continual feed
back from users makes possible to learn the user's point of view and to improve
a product just according to her/his notes and expectations. The applied method
based on a questionnaire survey has been presented - the layout of question
naires is the original solution. Four iterations of the collaborative development,
including software quality assessment, took place. The level of users' satisfac
tion from a product is currently better than that at the beginning.

1 Introduction

Users assess the quality of software in practice, after the product is delivered. But
software quality is born in the software process which is several tiines repeated till the
withdraw of the considered product. Users' involvement in the process is one of pos
sible strategies which support software quality improvement, like the QAW Method
[2], for instance. In general, a cooperation with users is the base of agile methodolo
gies [1]. It is not in contradiction with other trends in software engineering, like the
MDA (Model Driven Architecture) recommended by the OMG, for example.

The described research is referred to the class of software products which support
calculations in an engineering discipline. General characteristics of the considered
products are given in the next section. According to the ISO 9000:2000 the level of a
customer satisfaction from a product is one of recommended measures of its quality.
The level of user's satisfaction from a software product derives from its quality,
specified using accepted criteria and particular measures of its assessment.

The presented approach is based on a feedback from users in the product life cycle
(see section 3). That feedback must respect accepted methodologies and various con
straints [7]. The own experience shows that many users are eager to present their
suggestions to improve a product [5, 6]. The presented method has been applied to the
software system BW applied in civil engineering - it is briefly described in the sec
tion 4. Users of the described class of software are highly qualified experts in their
discipline who are able to give valuable feedback to software developers. The assess-

Please me the following format when citing this chapter:

Begier, B., Wdowicki, J., 2006, in IFIP International Federation for Information Processing, Volume 227, Software Engi
neering Techniques: Design for Quality, ed K. Sacha, (Boston: Springer), pp. 167-178.

www.manaraa.com

168 Barbara Begier, Jacek Wdowicki

ment of software quality takes place after the next version of the product has been
introduced. The questionnaire survey is here the recommended form of a software
assessment by its users. The content of a questionnaire must be comprehensive and
clear for its respondents. The practice shows that one edition of a questionnaire is far
not enough to obtain the successful result.

The described method to provide the valuable questionnaire survey has been de
veloped (see section 5), applied several times in practice and successively improved
to learn the user's point of view, including notes given to particular metrics and
his/her suggestions to improve the product (see section 6). The obtained results make
possible to develop the software product exactly to its users' expectations.

2 The Class of Software Supporting Engineering Calculations

Software products supporting calculations of various constructions in civil engineer
ing represent the class of numerical data processing - the numerical input describe a
geometry of a construction, expected loads, coefficients of equations, and parameters
which control a running software. Data and results are transformed to graphical
forms. Generated technical drawings, charts, and maps of stresses contain technical
terms and physical units which must be in accordance with technical terminology and
notation. Particular programs of calculations often cooperate with the well known
AutoCAD system. Authors of this kind of software focus first of all on a correct soft
ware construction [8], starting from mathematical and physical models, then pro
gramming numerical calculations providing the required accuracy and visualization of
results, including image processing.

The strength of wall constructions is calculated each time in a design process of a
building - so the supporting software is applied when such a need arises. The pro
gress in civil engineering (new types of constructions, different environmental condi
tions including various kinds of loads and applied materials) involves the develop
ment of a supporting sofl^^are. Software products required for engineering pxirposes
are maintained many years and evolve till their withdraw. Applied algorithms are
based on stable and repeatedly proven principles of mechanics.

Users of the described class of software products are widely regarded as experts in
their domain. High qualified users expect an added value - precise results of compu
tations, according to the requirements and the technical standards. The notions of
functionality, reliability and safety constitute the canon of their work. Professionals in
civil engineering are able to cooperate with software authors.

The following quality elements, to be considered in a production of that class of
software, have been specified [3, 4]:

1. Quality of goals of the software project - the specified level of an automation of
designer's work is required in the given area; the specification of the object of cal
culations and sources of loads should be clearly developed.

2. Quality of requirements - their specification includes the correctness of data de
scribing types of analyzed constructions and all possible loads.

3. Theoretical grounds of accepted technical solutions come fi-om the domain analy
sis, namely the civil engineering in the presented case.

www.manaraa.com

Feedbackfrom Users on a Software Product to Improve Its Quality in Engineering Applications 169

4. Quality of the software process - specification of the software development cycle
is worked out, including the required documentation, and then followed.

5. Quality of software construction providing its modifiability and portability.
6. Quality of interfaces between program modules and the provided proper access to

their common data.
7. Specification of software quality criteria and their particular measures to provide a

product assessment by its users.
8. Quality of testing - provided test cases assure the correctness of results and make

them reliable (although it is not easy to provide the real life data).
9. Quality of the user interface including graphical forms of presentations.
lO.Expected verifications of the input data.
11 .Required cooperation with the AutoCAD system.
12.Structure, content and language of the documentation, including documents of all

changes, test cases, and instractions for users.

All quality elements should be developed, discussed, assessed, and modified by
software designers, domain experts and potential users. The domain experts partici
pate obligatory in the software process to provide the quality elements denoted at 1-3
and 8. They also may cooperate with quahty engineers and software designers to
provide the other quality elements, especially those 4-7 here. In any engineering
calculations the correctness of the input data play the more important role than in
other fields - any mistake here may result in a construction disaster. At least the ele
ments denoted above from 9 to 12 should be assessed, in the authors' opinion, by all
users of the given software product. This statement is developed in the next sections.

3 Software Life Cycle Including a Feedback from Users

Software products applied in civil engineering are developed and improved in their
entire life cycle. In the described approach the main source of ideas to improve the
product comes fi-om its users, as shown in the Figure 1. The following steps are rec
ommended to provide a regular feedback from users on the given product:

1. Get learn and specify the users' profiles.
2. Specify and plan the forms of users' involvement in the process, mainly in a qual

ity assessment of a product.
3. Specify several dozen of quality criteria and measures.
4. Design the questionnaires with some place left for suggestions of changes.
5. Carry out a survey.
6. Collect results and process them statistically.
7. Record and analyze carefully all suggestions and proposals.
8. Compare current values of given notes with the previous results.
9. Select measures to be improved, choose some suggestions and start the next devel

opment cycle to build a new version.

Thus the provided answers and their analysis constitute a basis of software modifi
cations and improvement - one may control those features which are specified, then
implemented, measured, assessed, and possibly improved in the next iteration.

www.manaraa.com

170 Barbara Begier, Jacek Wdowicki

Start

Learning
users' new

expectations

Domain analysis and specification of: types of construc
tion, sources of loads and stresses, possible solutions

Specification of technical requirements, including
required cooperation with the AutoCAD

3 1
Specification of quality features and measures

concerning the product and its usage

Software development cycle including require
ments-driven testing

Softw^are product

Software product assessment by its users

Fig. 1. Software life cycle of a product supporting engineering applications

4 Object of an Assessment - the BW System

The integrated software system BW (its name is an acronym from 'Tall Buildings'
expressed in Polish) has been developed to support the static and dynamic analysis of
multi-storey buildings with large three-dimensional coupled shear wall structures. All
analyses should be accurate and fast - the calculations are not possible without the
computer support. The considered system provides calculations of internal forces,
stresses and displacements due to the set of lateral and vertical loads and flexural
moments. The static analysis is based on the developed variant of the continuous
connection method using differential equations for the usually expected and the ex
treme stresses, the shear and normal ones [12], The BW system enables also to ana
lyze the flexural strength of a tall building - its dynamic analysis is performed using
the hybrid continuous-discrete approach and the response spectrum technique to esti
mate the seismic response of a construction [14].

The BW system has evolved for many years. Its maintenance requires to respect
principles of software engineering and to pay a special attention to software quality
[3, 13]. Several programmers cooperate with the main authors of the technical solu
tion. Its current version follows the Eurocode 8 standard, accepted by CEN (Comite
Europeen de Normalisation) in 2003. It analyses torsions of the coupled construction
due to its displacements resulting from earthquakes or para-seismic effects. The BW
system is intended to cooperate with the AutoCAD system to get dimensions of a
construction from its technical drawings and also to transfer nxmierical values in the
opposite direction to check visually the correctness of the given data. The BW system
generates numerical and graphical results. It has been applied many times in practice
to calculate ca 240 constructions, in the home country and abroad.

www.manaraa.com

Feedbackfrom Users on a Software Product to Improve Its Quality in Engineering Applications 171

5 Quality Measures of Software for Civil Engineering Applications

The quality metrics have been specified during four years of work concerning quality
of software products developed for civil engineering. Quality criteria and measures
result from quality goals of the software project. Quality measures are, at first, the
part of software requirements and then they become a subject of a product assessment
by its users. The particular metrics have been worked out on a base of quality attrib
utes given in the ISO 9126 [9] and as a result of cooperation with users. The devel
oped decomposition of quality attributes is given in the Figure 2.

The scope of software functionality is related to the range of required types of con
structions and their loads. The provided cooperation with the AutoCAD system and
the data correction also belongs to the product functionality.

The main part of the software product assessment concerns its usability. It refers to
the software construction, user interface, ease of learn, and ease of use of the software
product. Comprehensive software construction corresponds to subsequent steps of a
design process and to designer's decisions made on a base of the obtained values. It is
important feature from the user's point of view to provide an easy way to change the
former set of input data and to perform calculations starting from the chosen point,
not only from the very beginning. An interactive impact on calculations and a possi-
biUty to trace them seem to be valuable. User's interface should provide conformity
with the terminology and notation used in the given technical discipline.

The usually long period of a program maintenance requires the portability of the
product including an ease of installation on various computer platforms.

All quality measures along with user's subjective impressions constitute the main
metric, namely the level of user's satisfaction from the considered product.

The following measures have been specified and then assessed:
Functionality
Ml. Variety of building constructions analyzed by the product.
M2. Sufficient number of various load cases analyzed by the product.
M3. Mode of cooperation with the AutoCAD system, providing an effective way to

check the correctness of the input data.
M4. Possibility for presenting subsequent steps of calculations.

Quality attributes

Fig. 2. The quality tree joint for software products applied in civil engineering

www.manaraa.com

172 Barbara Begier, Jacek Wdowicki

M5. Provided on-line correction of data describing the given construction.
M6. Correction of data concerning loads of the construction, including a withdraw of

the previously given values.
Comprehension of software construction
M7. Comprehension of all provided software options and their use.
M8. Clarity of software construction and the provided ease of an access to software

fimctions at any moment of use of a product.
M9. Ease of a program navigation using an icon tool bar.
MIO. Readable and clear access to software functions by making use of menus.
Mi l . Provided way to prepare the input data.
M12. Availability of lists of choice for the input data.
Friendliness of screen elements provided by a user interface
Ml 3. Comprehension of the content of lists of choice.
M14. Layout (arrangement) of objects presented on a screen.
Ml 5. Size of character types and other screen elements, including graphics.
Ml 6. Readability and comprehension of legends attached to drawings and charts.
M17. Provided kind and range of physical units.
Ml 8. Conformity of labels, used next to elements of charts and drawings, with the

technical notation applied in the given area.
Ml 9. Comprehension of language expressions used in inscriptions and messages; ease

of their interpretation (avoiding misinterpretation of them).
M20. Sufficient support with graphical forms.
M21. Proper use of colours appHed to screen objects and a background.
M22. Ability to customize views of screen objects to the user's likings.
Ease of learn to use the software product
M23. The time required to learn to use the program.
M24. The initially required help of the program experienced user.
M25. Estimated frequency of mistakes made in one hour of a software use.
M26. Frequency of currently made mistakes compared with that at the beginning.
M27. Useftilness of the provided user's instruction.
M28. Usefukiess of the built-in help option.
Ease of use of the software product
M29. Required help of an experienced user after the initial period of leam to use.
M30. Frequency of using the provided forms of help (in a given time period/unit).
M31. Feeling of a comfort of work at any moment during the use of the product.
M32. Sufficient number and clear content of the provided messages and alarms.
Safety of software and data
M33. Protection against an unauthorized user's access.
M34. Possibility to run a program for the incorrectly specified construction.
M35. Possibility to run a program for the incorrectly given load values.
Reliability
M36. Constant standby and ability to operate data (no unpredictable suspensions).
M37. Stability of program performance and a lack of unexpected side effects.
M38. Capability to maintain the specified level of performance under the stated con

ditions (the same parameters of performance after the multiple use of a product).

www.manaraa.com

Feedback from Users on a Software Product to Improve Its Quality in Engineering Applications 173

Portability
M39. Capability to run on the specified various platforms.
M40. Ease of program installation on any computer platform.
General assessment of the software product
M41. Level of users' satisfaction from the given software product.

6 Software Product Assessment Using a Questionnaire Survey

6.1 structure and Content of Questionnaires

Each questionnaire includes an initial part which contains questions concerning users'
experience with computing tools. Respondents have been asked about software prod
ucts used at their every day work - a number and a kind of software systems of gen
eral purpose, the frequency of using each product, and separately distinguished tools
suitably supporting professional applications in civil engineering.

The main part of a questionnaire has been developed to assess, first of all, the us
ability of the product. In its two first editions this part contained 26 questions,
grouped into 3 sections concerning subsequently: user interface, ease of learn, and
user's efficiency as a result of the provided ease of use [6]. In two last editions tliis
part has been increased up to 41 questions, containing all measures quoted in the
previous section. At the end, users are asked about their general assessment of a given
product. An additional point in all four editions was a request for user's suggestions to
improve the BW system.

The content of a questionnaire have been improved every year. The aim was to
achieve process-able and comparable results. Each group of items has its name coixe-
sponding to the quality criterion to keep user's attention on a given subject. Expected
forms of an answer should be clearly explained and suggested.

Two first editions showed that some questions were not equally interpreted by all
respondents. In a consequence, various forms of answers were given. For example,
the question "A frequency of mistakes made at the very beginning of the software use
compared to the current frequency of such mistakes" was imprecise. The answers
were like: a ratio (4:1, for example), number of times, percentage of cases during the
use of software, and also in words like "none" or "severaF'.

Table 1. The fragment of a questionnaire

M

24

25

26

27

Ease of learn to use the software product
The initially required help of the program experienced user
[1 - necessary, 2 - desired, 3 - partial, 4 - occasional, 5 - unnecessary]
Estimated frequency of mistakes made in one hour of software use
[1 more than 10, 2 - from 6 up to 10, 3 - from 3 up to 5, 4 - 1 or 2, 5 - zero]
Frequency of currently made mistakes compared with that at the beginning
[1 - no difference, 2 - a bit less, 3 - less than a half, 4 - rarely, 5 - by no means]
Usefiilness of the provided user's instruction
[1 - bad, 2 - insufficient, 3 - sufficient, 4 - good, 5 - very good]

www.manaraa.com

174 Barbara Begier, Jacek Wdowicki

The need arose to specify precisely the suggested imit of each answer. The set of
acceptable values of an answer should be attached to each question. The most compa
rable are numerals and thus just integers have been suggested as expected forms of
answers. In next editions of the questionnaire, the possible forms of each answer
along with their meanings were given in square brackets right behind each question as
it is illustrated in the Table 1. The last column is reserved for answers.

6.2 Overview of the Obtained Results

The subsequent software quality assessments using a questionnaire survey took place
four times - every year, since 2002. The 38 fulfilled copies were obtained in 2002,
then 41 in 2003 [6], 36 in 2004, and 30 in 2005. It took 10 up to 15 minutes for each
respondent to fulfil a questionnaire. An important question should be answered at the
very beginning of the questionnaire survey - if problems in use the considered soft
ware product arise from a possible lack of users' experience at computing and soft
ware tools, or not. Answers given to the questions in the initial part have confurmed
that civil engineers are skilled in computing - all of them use computers every day, all
are experienced with popular tools of general purpose like the MS Word and MS
Excel. All know and use the AutoCAD system.

All answers given by respondents during each edition of the questionnaire have
been entered into the report sheet. Its each row is designed for one question and re
lated answers. The first column points out the number of a question, and the next ones
contain provided answers. The following data are calculated and maintained in last
five columns: given minimum value, maximum value, sum of provided values, num
ber of answers, and the average of provided answers. The fragment of the report sheet
(limited to 15 respondents) obtained in the last edition is given in the Table 2.

In some cases of metrics, for example to assess the 'Feeling of comfort of work at
any moment during the use of the product or the 'Sufficient number and clear content
of the provided messages and alarms', the average values do not make sense. So
despite the comparable numerical results of the assessment the descriptive statistics
has been done to present all obtained data on graphs. Two examples of graphs pre
senting statistical data are shown in the Figure 3 and the Figure 4.

36%

3% 6%

19%

33%

Fig. 3. Results of assessment of the Mil Fig. 4. Results of assessment of the M5
{'Provided way to prepare the input data') {'Provided on-line correction of data

www.manaraa.com

Feedbackjrom Users on a Sojhvare Product to Improve Its Quality in Engineering Applications 175

Table 2. Fragment of the report sheet

User/ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Question Functionality

Ml
M2
M3
M4

-M5
M6

M7
M8
M9

MIO
Mil
M12

M13
M14
M15
M16
M17
M18
M19
M20
M21
M22

M23
M24
M25
M26
M27
M28

M29
M30
M31
M32

M33
M34
M35

M36
M37
M38

M39
M40

M41

5 5 5 5 3 5 5 0 3 5 5 5 3 5 5
5 5 5 3 5 5 5 5 3 5 3 5 5 5 5
3 4 5 5 4 4 3 4 4 3 4 3 5 4 5
4 4 5 4 4 4 5 0 4 4 4 4 4 4 4
3 0 2 4 4 4 4 5 4 3 4 4 3 4 4
3 0 2 4 4 4 4 5 4 3 4 4 4 4 3
Comprehension of software construction
5 4 5 4 5 5 5 5 3 4 4 5 4 5 4
4 4 4 5 5 5 5 5 3 5 4 5 4 4 5
4 5 4 5 5 5 5 5 5 5 4 4 4 5 5
4 4 4 5 5 5 5 5 4 4 4 3 4 5 5
4 5 4 5 4 4 4 5 5 4 5 4 4 5 5
4 5 4 5 5 5 5 5 5 4 5 3 4 5 4
Friendliness of screen elements provided by
4 5 4 5 5 4 4 4 5 4 4 4 3 5 3
4 4 5 5 5 5 5 5 4 4 4 5 5 4 4
3 3 5 5 5 5 5 5 4 4 4 5 5 5 4
4 4 4 3 4 5 5 5 3 4 5 4 4 5 4
5 5 4 5 5 5 5 5 4 4 4 4 5 5 4
5 4 5 4 4 4 4 5 3 4 4 4 4 5 4
4 4 5 5 4 5 4 5 5 5 5 4 5 5 4
5 3 5 5 4 5 5 5 5 4 5 4 5 5 5
5 4 5 5 5 5 4 5 5 4 5 4 5 5 5
4 3 3 3 4 3 4 0 2 3 4 2 4 5 5
Ease of learn to use the software product
5 5 5 5 5 5 5 5 5 5 5 5 4 5 5
3 5 4 2 2 3 4 4 2 2 2 4 1 4 4
4 5 4 5 5 4 4 5 5 4 4 5 3 5 5
4 5 4 4 5 4 5 0 1 4 4 5 3 5 5
4 4 4 4 3 3 4 0 2 3 4 4 3 4 3
3 4 3 3 3 3 4 0 3 3 4 4 3 4 3
Ease of use of the software product
4 5 5 4 5 5 5 5 0 4 3 5 5 4 5
4 4 3 4 4 4 4 5 3 3 3 4 3 4 5
5 5 5 5 5 5 5 5 5 5 3 5 3 5 5
4 5 4 5 5 5 5 0 3 4 4 5 4 5 3
Safety of software and data
4 0 3 2 3 3 4 5 1 2 4 4 1 4 3
3 3 4 4 3 4 4 0 3 4 3 4 3 4 3
3 3 4 4 3 4 4 0 3 3 3 4 3 4 3
Reliability
4 5 4 5 5 5 4 5 4 4 5 5 3 4 4
4 5 4 5 4 5 3 5 4 4 5 5 3 4 5
4 5 4 5 4 5 4 5 4 4 5 5 4 4 5
Portability
4 0 4 5 5 3 4 0 3 4 4 4 4 5 4
2 5 4 5 5 5 5 5 5 4 5 4 5 5 5

min max

3
3
3
4
2
2

3
3
4
3
4
3

5
5
5
5
5
5

5
5
5
5
5
5

suyn

64
69
60
58
52
52

67
67
70
66
67
68

a user interface
3
4
3
3
4
3
4
3
4
2

4
1
3
1
2
3

3
3
3
3

1
3
3

3
3
4

3
2

General assessment of the software product
4 4 4 5 3 4 5 5 3 4 4 4 0 4 0 3

5
5
5
5
5
5
5
5
5
5

5
5
5
5
4
4

5
5
5
5

5
4
4

5
5
5

5
5

5

63
68
67
63
69
63
69
70
71
49

74
46
67
58
49
47

64
57
71
61

43
49
48

66
65
67

53
69

53

n

14
15
15
14
14
14

15
15
15
15
15
15

15
15
15
15
15
15
15
15
15
14

15
15
15
14
14
14

14
15
15
14

14
14
14

15
15
15

13
15

13

averaae

4.57
4.60
4.00
4.14
3.71
3.71

4.47
4.47
4.67
4.40
4.47
4.53

4.20
4.53
4.47
4.20
4.60
4.20
4.60
4.67
4.73
3.50

4.93
3.07
4.47
4.14
3.50
3.36

4.57
3.80
4.73
4.36

3.07
3.50
3.43

4.40
4.33
4.47

4.08
4.60

4.08

The general assessment of the product is relatively high (4.08). And 30 from
among 40 particular measures have gained the average notes higher than 4.0. The
facilities of data correction are the most difficult to improve them. It seems to be the

www.manaraa.com

176 Barbara Begier, Jacek Wdowicki

general problem concerning any kind of software product - how to provide the satis
fying level of verification and correction of data.

The highest average notes gained all measures concerning the comprehension of
software construction and its reliability. The worst notes were given to the measures
of safety of programs and their data - fortunately, these are not the key measures in
the case of software products supporting appUcations in civil engineering.

In some metrics the maximally different results have been obtained. For example,
in the case of M24 and M26 the range of values is from 1 to 5. There is a correlation
between an experience in using the AutoCAD system and other software for engineer
ing applications - users who assess their experience in using those products as the
average require the help of an experienced user. The other explanation associates a
user with his/her professional envirormient - respondents who cooperate with experi
enced users do not complain about the ease of learn to use the product.

7 Software Quality Improvement Resulting from the Users'
Involvement in a Product Assessment

All notes and suggestions given by users have been carefully analyzed after each
questionnaire survey. Fortunately, many of the polled users show their willingness to
influence on a software product - each second respondent gave his/her particular
suggestions, although the weight of them was not equal - from a suggestion of using
boldface elements or letters on a specified chart, to identify a danger of loosing some
data in the case of a too fast click in the described circumstances. Users' remarks and
expectations regarding each new version of the BW product concern:

a) improvement of some specified software features and a system usage,
b) close cooperation with the AutoCAD system,
c) an increasing number of types of analyzed building constructions.

The chief of an assessment and the developers' leader (both are the authors of the
presented paper) have worked out three enumerated lists of suggested changes, sepa
rately for each kind of the listed above problems. Each item on a list has its several
initially specified attributes: number, name, date of registration, weight (assigned
using three different colors), description, justification (goal and related quality meas
ures), addressee. The developed lists are transferred each time to programmers who
then are obliged to fulfill several other attributes and explain what real modifications
of the software product have been made. Thus the history of all changes and their
justification is maintained - it also shows the favorite areas of programmers' work.
The reality shows that programmers are eager to improve first of all the interface with
the AutoCAD system. Thus the new or widely modified pre- and postprocessors co
operating with the AutoCAD have been subsequently developed. But the note given
to the mode of cooperation with the AutoCAD (M3) remains the same, namely 4.00.

Authors of the BW system have taken into account many critical remarks concern
ing their product and have eliminated its some weak points pointed out in the ques
tionnaire survey. So the directions of software product improvement follow exactly
the users' notes, given opinions, and submitted suggestions.

www.manaraa.com

Feedbackjrom Users on a Software Product to Improve Its Quality in Engineering Applications 111

Average values of most measures have grown since the previous assessment. For
example, the variety of building constructions analyzed by the program BW (Ml) has
gained the average note 4.57 (previously 3.94). The comprehension of all provided
software options and their use (M7) arose from 4.12 up to 4.47, the provided way to
prepare the mput data (Mil) previously achieved an average 3.71 while 4.47 last
time, and the availability of lists of choice for the input data (M12) got 3.94 and 4.53,
respectively. The estimated frequency of mistakes made in one hour of software use
(M25) has been currently assessed much better (4.47) than before (3.47). Also the
average note given to the frequency of currently made mistakes compared with that at
the begirming (M26) has grown from 3.82 up to 4.14. The feeling of comfort of work
at any moment during the use of the product (M31) arose from 3.94 up to 4.73.

Useflilness of user's instruction (M27) and that of the built-in help option (M28) is
still problematic and even a bit worse than previously: 3.50 and 3.36 instead of 3.88
and 3.56, respectively. So some help of the program experienced user (M29) is still
required at the beginning (it got the average note 4.57 recently, and previously 3.82).

Again and again the data correction is assessed as a weakness of the product - the
provided on-line correction of data describing the given constiTiction (M5) and the
similar measure related to the loads of the building (M6) are both currently assessed
equally as 3.71 and are a bit worse than previously (3.76 and 3.88, respectively).

After four iterations of software development including periodical quality assess
ment of the product by its users, the average level of users' satisfaction from a prod
uct is slightly better (4.08) than that obtained the previous time (4.0).

8 Conclusions

Evaluation of software quality based on data coming from software users is the cur
rent problem in software engineering. The experience using a questionnaire survey to
gain a continuous feedback from users on a software product has been described.
Conclusions are related to: the form and the layout of the questionnaire, the obtained
results, and the general idea of the applied approach. Some remarks concerning the
content of the questioimaire are given in the section 6.1. After the careful analysis
there are still some doubts if names of metrics and expressed possible answers are
phrased well. Maybe the Likert scale will be used in the next edition of the question
naire. In this method each item of the questionnaire is the statement and the respon
dents are asked to indicate their degree of agreement with the provided statements.

Users' expectations are growing every year. It is a real risk - if a software product
remains unchanged then the general note given in its assessment may be each time
worse than it was before. Notes are given to the particular measures of the software
product in the changing environment - the level of average user's skills is growing.
Also a range of users' expectations increases according to the hierarchy of needs
described by Maslow [10] - users propose new requirements after their basic needs
are satisfied. So the gained results of questionnaires may surprise when strictly com
pared - the new results may be worse than previous ones, although many improve
ments have been done in the meantime.

www.manaraa.com

178 Barbara Begier, Jacek Wdowicki

Despite all differences between the software products applied in civil engineering
and any other software the idea to incorporate users to the software process looks
promising. At least the periodical assessment of the software product by its available
(possibly all) users is worth working out and decidedly recommended here. The as
sessment is based on the questionnaire survey. The content of a questionnaire and all
forms of the expected answers should be carefully specified to get valuable results
and to avoid misunderstandings. In other words, the questionnaire itself should be
periodically improved, too. Users' answers and suggestions are a base of the specifi
cation of required changes. The history of all justified changes is maintained.

References

1. Agile Modeling(AM) Home Page, http://www.agilemodeling.com/, 2001-2005
2. Barbacci M. R., Ellison R., Lattanze A. J., Stafford J. A., Weinstock Ch. B., Wood W. G.:

Quality Attribute Workshops (QAWs), 3"* edn, CMU/SEI-2003-TR-016, Carnegie Mellon
Software Engineering Institute, Pittsburgh (USA), August 2003,
http://www.sei.cmu.edu/pub/documents/03.reports/pdf/03tr016.pdf

3. Begier B., Wdowicka E., Wdowicki J.: On the mcthodics providing software quality in civil
engineering applications. In: Tasso C, Adey R. A., Pighin M. (eds.): Software Quality En
gineering. Computational Mechanics Pubhcations, Southampton-Boston (1997) 71-80

4. Begier B., Wdowicki I.: Quality criteria of software provided for the calculations of con
structions in civil engineering (in Polish). In; Tadeusiewicz R., Lig^za A., Szymkat M.
(eds.): The 3'''' National Conference on Methods and Computer Systems in Research and
Engineering MSK'Ol, Conference proceedings. Krakow (2001) 233-238

5. Begier B.: Software quality assessment by users. In: Huzar Z., Mazur Z. (eds.): Problems
and methods of software engineering. Wydawnictwa Naukowo-Techniczne (2003) 417-431

6. Begier B., Wdowicki J.: Quality assessment of software applied in civil engineering by the
users. In: 4* National Conference on Methods and Computer Systems in Research and En
gineering MSK'03 (in Polish). Krakow (2003) 547-552

7. Begier B.: The UID Approach - the Balance between Hard and Soft Methodologies. In:
Zielinski K., Szmuc T. (eds.); Software Engineering: Evolution and Emerging Technolo
gies. lOS Press, Amsterdam (2005) 15-26

8. Cooke J.: Constructing Correct Software. The Basics. Springer Verlag, London (1998)
9. International Standard ISO/IEC 9126-1:2001, Software engineering - Product quality, Part

1: Quality model. ISO Copyright Office, Geneva (2001)
10. Maslow A.: Motivation and Personality, Harper and Row (1954)
11. Sikorski M.; Usability management in information technology projects (in Polish). Wy-

dawnictwo Politechniki Gdanskiej, Gdansk (2000)
12. Wdowicki J., Wdowicka E.: System of Programs for Analysis of Three-Dimensional Shear

Wall Structures, The Structaral Design of Tall Buildings, Vol. 2 (1993) 295-305
13. Wdowicki J., Wdowicka E., Tomaszewski A.: Integrated System for Multi-storey Buildings

- Use of Software Engineering Rules. In: European Conference on Computational Mechan
ics ECCM-2001, Cracow, Poland (2001) 1-20

14. Wdowicka E., Wdowicki J,, Blaszczynski T,: Seismic analysis of the 'South Gate' tall
building according to Eurocode 8. In: The Structural Design of Tall and Special Buildings,
Vol. 14, John Wiley & Sons, Ltd, 1 (2005) 59-67

www.manaraa.com

Reaching and Maintaining High Quality of Distributed
J2EE Applications - BeesyCluster Case Study***

Pawet Czarnul

Faculty of Electronics, Telecommunications and Informatics
Gdansk University of Technology, Poland

pczarnul@eti.pg.gda.pl

Abstract. The paper presents design recommendations, selected and representa
tive implementation and configuration errors encountered during development of
BeesyCluster - a J2EE component-based system for remote WWWAVeb Service
file management, task queuing, publishing services online for other users with
credential management and team work support. Based on a QESA methodology
developed previously, we build a quality tree by including the aforementioned but
generalized recommendations, errors, and solutions for multi-tiered distributed
J2EE applications. This allows to validate other similar applications in the future
against errors we have identified and solutions we recommend thus creating a
quality checklist for other J2EE developers.

1 Introduction

Although the market offers applications in a variety of fields, there is a growing need for
high quality software. This is true especially in view of a large collection of open source
code available on the Internet but of variable quality. The latter can be used or embedded
into larger projects to solve specific tasks (within the limitations imposed by licences).

It is the quality of the development process, the methodology used, design practices
and implementation techniques that contribute to the final quality of the product.

For complex applications, designers and programmers might reuse solutions to
similar problems faced by others before which is often expressed as design patterns.
Certainly a check-list of typical implementation errors, especially for distributed
Internet-based applications, would also be useful to eliminate bugs quickly. Of equal
importance are activities and issues that show up during software configuration,
deployment and maintenance, usually very time-consuming but nevertheless required.

2 Motivations and Goals

Based on the facts derived above, we can conclude that every effort that classifies
recurring design/implementation/deployment/maintenance problems and solutions can
help improve new projects.

* partially covered by the Polish National Grant KEN No. 4 TllC 005 25
** calculations carried out at the Academic Computer Center in Gdansk, Poland

Please use the foUowing format when citing this chapter:

Czamiil, P., 2006, in IFIP International Federation for Information Processing, Volume 227, Software Engineering Tech
niques: Design for Quality, ed K. Sacha, (Boston: Springer), pp. 179-190.

www.manaraa.com

180 Pawel Czamul

A research team led by the author of this paper has successfully designed,
implemented and deployed a large Web-based portal for accessing HPC (High
Performance Computing) clusters, file and task management, queuing, making tasks
available to others via W W W with a virtual payment subsystem and a team work
environment, described in detail in paragraph 4 and [1-3]. BeesyCluster was deployed
at Academic Computer Center, Gdansk, Poland as an access portal to HPC clusters
including a 288-processor IA-64 hoik, a 64-processor SGI Altix 3700 system and
others^ 21 designers, programmers and documentation writers have contributed to the
project over 3 years. The goal of this paper is to use the experience we have gained
during the development of BeesyCluster (ca. 100 JCLOC) and turn it into a concise
check-list in the form of a quality tree. The paper identifies and suggests solutions to;

1. selected design problems - this will include comments on the usage of existing
patterns and possibly identification of new recommendations,

2. selected implementation errors - especially useful since provides a check-list of
problems the programmer might face in own applications,

3. system configuration/management/deployment problems - can be non-trivial,
time-consuming and require much experience for complex J2EE and distributed
systems.
Since J2EE imposes API and the multitiered architecture, this serves as a common

denominator for applications considered which in turn makes this approach viable.
The quality tree which includes common J2EE problems and implementation

errors is defined to automate the process of checking other applications against errors
identified in BeesyCluster and making it easier to eliminate them. Each application can
be evaluated in a special QESA tool, codeveloped by the author before.

3 Related Work

Firstly, existing J2EE design patterns are directly related to our work here as provide
reference solutions to typical design problems encountered during development of J2EE
applications. As [4] suggests the patterns are:

- reusable - can be used for several applications, are also expressed in general terms
so can be applied to problems in various areas,

- developed and improved by knowledgeable designers and programmers.

[5] lists various design patterns for J2EE applications important of which are:
Intercepting Filter, Front Controller, Session Facade and Web Service Broker for
exposing selected services for SOAP calls.

As for avoiding implementation errors, there exist Code Conventions for the Java
Programming Language ([6]) to save on software maintenance (80% of the lifetime
cost of software according to [6]). Java practices are collected in [7] including issues
for servlets/JSPs, coding exceptions, input/output, collections and common practices

' https://beesycluster2.eti.pg.gda.pl/ek/Main from anywhere, https://karawela.task.gda.pl:8443/
ek/Main from Gdansk University of Technology

www.manaraa.com

Reaching and Maintaining High Quality of Distributed J2EE Applications-BeesyCluster Case Study 181

like defensive copying, using testing frameworks like JUnit etc. Still, J2EE specific
errors are not addressed.

Secondly, we try to automate the process of checking the quality of design,
implementation, configuration by including the identified practices, errors into a quality
tree. This is related to existing general software quality models and defect classification
methods.

There are several general quality approaches available. The Goal-Question-Metric
(GQM, [8]) method first specifies goals to achieve, formulates questions which help
achieve the goal, defines metrics for which data is collected and answers the questions
([8]). COCOMO ([8]) and Function Points ([8]) can be used to measure the required
effort and software size. Software Process Improvement and Capability Determination
(SPICE, [8], [9], published as ISO/IEC TR 15504) is an international initiative aimed at
the standard of software process assessment, used in the context of process improvement
or process capabiUty determination either of an organization or a supplier. SPICE defines
a framework for performing evaluation, required activities, defines how to conduct
software evaluation. [10] presents system-level quality metrics for component-based
systems that can help managers decide whether existing components should be reused.

In this work a QESA approach, introduced by us in [11] for improving design of an
application for management of ship containers, will be used to build a quality tree
including design practices, errors and recommended solutions. Paragraph 6 discusses
the QESA methodology and compares it to defect classification methods like IBM's
Orthogonal Defect Classification and HP's Company-Wide Software Metrics ([12]).

4 BeesyCluster

BeesyCluster can be seen as an access portal to a network of clusters/supercomputers/PCs
with WWW and Web Service interfaces. Figure 1 depicts the architecture of the system
with main modules and relationships (described in detail in [1]). The user sets up an
account in BeesyCluster through which (single sing-on) can access accounts on many
difi'erent clusters/supercomputers/PCs. Users can manage files and run sequential or
parallel tasks (interactively or queued) on their accounts on clusters/supercomputers/PCs
via WWW and Web Services. Furthermore, users can publish their services (applications,
sequential or parallel, run interactively or queued on clusters/supercomputers as well
files) to other users of BeesyCluster. For the use of services (if not specified as free of
charge), users-providers earn points which can be spent on running services pubUshed
by others. Users can register new clusters or individual PCs in the system just by
providing a login/password to any system account and can run tasks, edit files and
publish services from there,

BeesyCluster is representative in terms of:

distributed architecture - the user connects to BeesyCluster via WWW or Web
Services while the system uses SSH to connect to accounts on remote clusters/PCs
and run tasks there - we run several demanding parallel applications using this
system (described e.g. in [13]),

access via multiple popular interfaces - WWW and Web Services (its efficiency in
BeesyCluster tested in [2]),

www.manaraa.com

182 Pcnvel Czarnul

Presentatio
n CC Cluster

Commahder"^

Em AS -Authorization iPS^- Paym^n

hoik (256 processors)
galera (128 processors)
small Linux dusters

Fig. 1. Architecture of BeesyCluster

grid computing - the user can mark an application to be available as a service via
WWW or Web Services from both accounts on clusters as well as even desktop
PCs - this implements controlled resource sharing i.e. grid computing,

data replication - uses data replication in several databases for which consistency
must be maintained and is handled by a custom-built distributed database replication
mechanism on MySQL outside of J2EE,

clustering - uses multiple J2EE servers to increase availability and reliability,

session and security handling using WWW and Web Services (described in para
graph 5.1) - handling security identities and rights to the resources (digital
signatures with asymmetric cryptography are used),

modular design - the system is composed of modules which can be implemented
independently and share the same top-level compilation scripts,

variety of interactive services via applets - BeesyCluster uses two dedicated Java se
rvers for chat and a board shared by users for interactive collaboration, another
applet implements an online remote shell on clusters,

building scientific worliflows - services on clusters can be combined into complex
scientific workflows ([3]).

www.manaraa.com

Reaching and Maintaining High Quality of Distributed J2EE Applications-BeesyCluster Case Study 183

5 Classification of Patterns/Solutions to Typical Errors Identified
during Development of BeesyCluster

5.1 Selected Design Problems/Solutions in BeesyCluster

In this paragraph, we distinguish selected design problems and their solutions in
BeesyCluster (Table 1, [1]). This is done in view of the existing J2EE design patterns,
also in a broader context of current and future technologies which are suggested for
implementation.

Tab. 1: Selected Design Problems/Solutions in BeesyCluster

Problem Solution
Portable .
Authorization
and Session
Management
for Various
System
Interfaces
and Clients

Since complex applications can use various interfaces like WWW, Web Services,
listen on sockets using a proprietary protocol, wait for a file system change etc., a
portable and compatible way of autliorization and session management between
calls must be used. BeesyCluster suggests a way in which the user logs in with a
username/password and obtains an encrypted token which is passed with following
calls (steps analogous to publishing data in UDDI). In the system there is a
dedicated business component for authorization based on a database. Then for:
1. WWW requests: authorization can be done within an Intercepting Filter

([5]) which verifies the token by calling the business component per each
request before delegating the request to following components, possibly Front
Controller. Although J2EE has a way of defining roles that may access Web
components and J2EE server users may be mapped to these roles, this way is
more flexible since can employ e.g. runtime variables as time of day or IP into
granting access. The token which handles session information may be stored
in a cookie or in a session object on the server and be identified by a cookie.

2. Web Services or other interfaces: a method for logging in is a first required
step which returns a token which is then used as an additional parameter to
successive calls ([3] explains the way it is implemented in BeesyCluster).
"Business" Web Services (which call EJBs) call a business component to
verify access. Similarly, the proprietary protocol for TCP communication
might use the same token. This means that the user could possibly start a
session using WWW and finish using Web Services from another device.

Separation of
Java Code
from Web
Pages and
Instant
Review of
Page Changes

Although the J2EE standard defines the presentation layer (servlets, ISPs) and
business logic layer (EJBs), stiU servlets and especially ISPs can contain conti-ol
statements (patterns like Front Controller or Composite View [5]) as well as
formatting for Web pages. It can be recommended to use a technology purely for
presentation/formatting output. In our case, we used Velocity which displays
(using proper templates) output variables (from proper business methods) or arrays
set in servlets. Furthermore, changes in templates do not require recompilation
which speeds up the development.

continued on next page

www.manaraa.com

184 Pawel Czarnul

Problem Solution
Multiple
Extensible
Interfaces to
the System
and Business
Layer
Separation

In today's world, apart from the WWW interface for human-system interaction over
the Internet, complex applications need means to communicate among themselves.
We used Web Services (based on AXIS), currently an element of J2EE, to provide
such possibilities. In fact the Web Service Broker pattern suggests this approach.
Still, other interfaces might be needed like more efficient proprietary protocols
over TCP etc. J2EE is well prepared for this as business methods may be called
by endpoints handling these interfaces e.g. servlets/JSPs for WWW, Web Service
for SOAP, a server listening on sockets etc. From this perspective, it seems crucial
that business methods are sufficiently isolated (Session Facade [5]).

Minimizing
latency to
data layer
and external
systems

This should be done by proper caching of data:
1. when fetching data from external systems or the database, part of it should be

reused for following cUent requests if possible (e.g. reloading the left panel of
the file manager does not cause querying of the right panel of another cluster),

2. in the presentation layer: technologies like AJAX allow to exchange XML
data with the server without reloading the entire page.

Uniform
Logging
Facility

Logging can be incorporated into an Intercepting Filter but only for presentation
layer components. A dedicated logging component (e.g. bean) is suggested
recording the id of the calling module, time, the user who has requested the
operation, users whom the operation affects, priority, description. It is recommended
to define logging levels to reflect the J2BE layers (presentation, business). Logging
in the presentation layer should be turned off when EJBs already log detailed
information.

Transparent
Parallel and
Reliable
Access to
Data

Usually data would be retrieved from a database by entity beans (BMP or CMP).
Still, it is desirable that there is a mechanism, transparent to the prograiimier,
that hides potentially parallel access to several databases for both increasing the
throughput of e.g. SELECT queries and reliability (if some database nodes fail).
This can be configured in both commercial engines and e.g. MySQL where a master
node and slave database server nodes can be configured. Within BeesyCluster, an
extension to the MySQL solution was implemented which changes a slave to the
master if the current master fails. Additionally, synchronization algorithms can be
changed to e.g. quorum consensus and others easily ([1]). This in fact suggests a
more complex sequence diagram for the standard Data Access Object pattern ([5])

Client-aware
Interface

Although fast broadband Internet connections have become mainstream, the
client-system data transfer should be client-aware because of mobile devices like
palmtops or mobile phones with limited memory and processing capabilities
(MIDP 2.0 requires 128KB for the Java runtime heap, 8KB for persistent data, a
screen of 96x54 pixels). Crucial Web, Web Service or other resources should take
the maximum returned data size parameter. This can be done with the standard
request e.g. by:
1. another request parameter for HTTP transfer,
2. another header in a SOAP message for Web Services ([14]).
Revert to a basic but functional interface for less capable browsers.

Minimize
Response
Time by
Advance
Queries

Periodic calls with output to be used by user queries (e.g. monitoring the state of
remote systems or databases to be queried next) should be done by threads in
the background (threads or separate servers). The output (possibly somewhat
out-of-date) is fetched when the user request is handled. IMS communication with
threads is suggested.

www.manaraa.com

Reaching and Mamtaming High Quality of Distributed J2EE Applications-BeesyCliister Case Study 185

5.2 Selected Implementation Errors Identified during Development of
BeesyCluster

Table 2 lists selected implementation errors or recommendations identified during the
development of the system. These are likely to occur in other complex applications.

Tab. 2. Selected Implementation Errors Identified during Development of BeesyCluster

Layer
Presentation
Layer

Presentation-
-business Layer
Interaction

Business Layer

Errors or Recommendations to Avoid Errors
1. Initial values not filled in web forms.
2. Presentation layer servlets and JSP pages using hardcoded ids (e.g.

clusters or users) not from the database thus making it inconsistent with
ids used by the business layer components.

3. Specific parameters (text boxes) cause problems (e.g. spaces in the
names of directories).

4. Access to specific servlets or JSP pages should not be granted to users
with restricted privileges (missing conditional instructions).

5. Test functionality of the interface using 1 client, always use 20+
concurrent client requests from various nodes to test response times,
isolation of transactions, potential deadlocks when referring to same
resources.

6. Always disable display of exception details for production version, log
details to a log, always print information to a log in catch blocks.

7. Avoid a long sequence of page reloads (3+) to complete a task, could
be completed within one page (using e.g. AJAX).

8. Use only one way of fetching session information in web components.
1. When processing in business method takes 5+ seconds, call it asyn

chronously, store a handle and allow to retrieve status or make the
presentation layer show progress until results are available.

2. Data presentation not handled properly for certain input data to the
business layer or error codes from the business layer not interpreted.

1. Errors in EJB components which are likely to be detected only during
the real deployment of that module. Example: errors of task submission
to a real cluster from the module (via the Jsch Java library).

2. Long response times or hangs when submitting many requests to an
external system in a short time frame - configure external systems
properly. On cluster hoik command must be run via a proxy node -
initially via rsh. rshd on hoik reftised connections in tlie case of many
concurrent requests (ports up to 1023 can only be used). Using ssh
solved the problem.

5.3 System Configuration/Deployment Errors and Solutions

Management of configurations especially in the case of multiple installations of a
system, possibly on different architectures is challenging. BeesyCluster's official release
runs on Solaris while the development version on Linux.

www.manaraa.com

186 Pcnvel Czarnul

Tab. 3: System Configuration/Deployment Errors and Solutions

Issue

Security

Database Con
figuration

System Config
uration

Versioning

Items

1. HTTP connection available after testing, should leave only HTTPS.
2. Errors with certificates in HTTPS access from certain browsers (error

for self-signed certificates where Common Name (CN) of the issuer
and CN of the entity the certificate was issued to are identical -
Mozilla, Konqueror).

3. Securing physical access to servers (accidental restarts by other users).
4. Hide URLs for services where possible (e.g. by a proper Front

Controller pattern passing parameters for selected URLs).
5. Write a client for exposed URLs requesting with random parameters

and use it for testing.

1. Error in scripts filling the database with initial data (SQL statements
not accepted by later MySQL versions, worked correctly on the
version, BeesyCluster was originally deployed on).

2. Modification of a single node of a cluster of replicated databases.
During some tests using one node, only a single database was modified
and another backed up as a master.

1. Problems with specific versions of required libraries e.g. xdoclet pre
1.2.2 caused compilation errors while newer versions worked correctly,

2. Problems with migration from Java 1.4 to 1.5, qualified names should
be used in the code due to the conflict with classes from Java 1.5,

3. Inconsistent configuration (versions of software) and startup scripts
across the cluster of servers, need for a tool updating all nodes or NFS,

4. Some services would not start properly after system was restarted
although the core of the system worked correctly (Java chat/whiteboard
servers).

5. Uniform configuration and compilation scripts for all modules are
recommended. It is possible to define a top-level build.xml file so that
a new module can simply be added by copying its directory into the
existing sources and no or very few additional changes are required.

6. Failures of operating system servers cause selected servers used by
the system to fail. Creation of a simple monitoring tool with restart
of services is recommended.

1. Components were updated on one of the J2EE servers instead of all
the servers which resulted in errors on those servers. Use a distribution
tool to distribute changes to all servers.

2. Submission of incorrect versions of components to a server for
deployment - already corrected errors/bugs would show up again.

In view of clustering and replication to increase the number of clients the system can
handle in parallel/concurrently and inconsistencies of configuration across the cluster,
errors of this type in BeesyCluster (Table 3) can be applicable to other systems as well.

www.manaraa.com

Reaching and Maintaining High Quality of Distributed J2EE Applications-BeesyCluster Case Study 187

6 Quality Modeling and Evaluation in QESA

6.1 QESA Methodology

The QESA methodology ([11]) uses a generic QESA
quality tree (Figure 2) to evaluate the quality of a
product or phase by general top-level external quality
attributes each of which is defined by either four or iive
quality factors at the second level (several translation
functions are available). In the QESA methodology,
these two levels are fixed since are thought to be general
enough to suit any application, development phase or
product. Depending on whether a development phase or
a product is evaluated, factors will be further defined by
more precise metrics at the lower and measures at the
lowest level of a four-level quality tree - both chosen by
the user to suit the application. As an example attribute
dependability defined by factor error-tolerance could
be defined by metric presentation layer errors and this
by question whether access to page tested when no
user logged in. Then answers to questions in measures
or their numerical values propagate up the tree and
generate final values for quality attributes.

QESA allows e.g. metrics to contribute to a factor by
a decreasing function. Usually a more complex and fancy
user interface improves visual effects while decreases
interaction performance. Measures being in fact internal
quality attributes are defined with values in their own
domain (e.g. seconds or LOCs) and normahzed into the
[0,1] range. Quality attributes, factors and metrics are
defined within the range [0;1], the higher value meaning
better quality at the highest level.

In fact, as applied during classes on Software Quality courses at Faculty of
Electronics, Telecommunications and Informatics, Gdansk University of Technology,
the QESA quality tree could be used in many ways, two of which are:
1. During the software development cycle, a new quality tree is created for each phase

with metrics and measures specific for the given phase.
2. For the comparison of products e.g. complete applications, a reference quality tree

is created with metrics and measures specific for the given type of product and
evaluation is performed for each product. Values can be compared in the QESA
system. In particular, an aggregate value for higher level factors and attributes can
be compared.

+ f Reliability

i+ "f SecuriV
+ f Error tolerance
+ •f Testability

f Safety
- f Satisfaction

+ li" Ease of use
* 7 Understandability
+ f Learnability
+ V Acceptance

f Productivity
- "? Functionality

+ f Functional Completeness
+ f Complexity
+ "f Adequacy

\ !+]• "f Traceabilily
j '- f Integrity
i i i f Flexibility
; ft-f Portability
\ ffi- f Modifiability
j Wt'f Configurability
1 E f Ease of testing
B-'f Performance

ffi f Scalability
!±i- "f Interaction performance
iil f Execution efficiency
-•• f Stability

Fig. 2. QESA Quality Tree
Two Top Levels

6.2 Modeling Quality of BeesyCluster as a Template for New Applications

Modeling quality of BeesyCluster as a quality ti-ee will allow other applications to be
verified against the errors, deficiencies and design strategies suggested in paragraph 5.

www.manaraa.com

188 Pawel Czarmil

For the BeesyCluster system, we have created quality models (trees) with metrics
and measures specific for distributed and parallel applications which is our area of
expertise ([13], [3]). Quality trees refer to;
design - measures are simply questions whether the design principles given in

paragraph 5.1 are met (yes/no) or in what degree (numerical value),
implementation - whether the code has been validated against the errors listed in

paragraph 5.2 and other basic coding standards,
testing - system tested for some implementation errors from paragraph 5.2 and

configuration/deployment from paragraph 5.3.
As an example, the programmer/user of a new system specifies in the testing

phase response times or whether form parameters have been tested. The values are
processed by QESA which produces a final quality values for dependability, satisfaction,
functionality, flexibility and performance. If the quality is satisfactory a new phase may
start. This approach is similar to IBM's Orthogonal Defect Classification from 1992
([12]) where in each phase numbers of defects of eight types are noted depending on
the repair needed for the defect. Then the changes of distribution of defects between
phases are compared to expected patterns. Process Inferencing Tree is built to track
defect changes between phases. Similarly, in tracking quaUty QESA is similar to HP's
Company-Wide Software Mefiics from 1987 ([12]) which classifies defects into types
depending on the phase and assigns mode e.g. missing for missing error checking. If
other projects data is available, trends can be observed.

An exemplary part of the QESA quality tree for BeesyCluster's testing is shown
in Figure 3 and includes the metrics and measures corresponding to items listed in
paragraph 5.3. Resulting quality charts for BeesyCluster without the identified points
(related to errors from paragraph 5.3) improved are shown in Figure 4 and after
corrections in Figure 5. After the improvements the system can still be corrected e.g. a
better interface can be engineered (as also reported by the attendees of a training
course) or the response time can be reduced thanks to faster hardware.

For distributed J2EE appUcations such as BeesyCluster, the highest-level quality
attributes given the largest weights (angles in Figures 4 and 5) are:
1. dependability especially error-tolerance i.e. how the system tolerates errors (here

we assume that if several issues identified in BeesyCluster are not checked and
tested for, the system may give undefined results), reliability (the system must be
available and functional at all times) and security since providers must be certain
their resources cannot be compromised beyond what they permitted,

2. functionality mainly functional completeness in the case of BeesyCluster being
remote task execution, management, making resources available, receiving proper
payments for the resources checked out etc.,

3. performance especially interaction performance (the system must respond in less
than a few seconds for any request), scalabihty (must scale well with the number of
servers and users).
The presented quality tree is available from the author. The QESA (SOJO in Pohsh)

system can be downloaded from http://fox.eti.pg,gda.pl/~pczarnul/SOJO-
l.O.zip. A Web-based version of QESA is available at http://153.19.53.71
/qes/page.tytul.php.

www.manaraa.com

Reaching and Maintaining High Quality of Distributed J2EE Applications-BeesyChtster Case Study 189

y t
v'Reliability
y Secutity
^ V" hat dwate access
- v-'System Access

^/SSL configured
y PASSWORD TEXT BOXES WITH HIDDEN TEXT
^ CERTIFICATES (BROWSER, SSL) TESTED ON BROWSERS [%]

y Etiortoleiance

- v'"set's manuals
- y PRESEN FATION LAYER ERRORS

y TESTED WITH BLACK-BOX FOR BUSINESS LAYER COMPONENTS
y INITIAL VALUES FILLED [%]
V' USING DATA FROM DATABASE WHERE POSSIBLE [%]
V-' USER PRIVILEGE CHECKING FOR ALL SERVLETS/JSP PAGES
>/TESTED WHEN NO USER LOGGED IN
y CONTROLLING SESSION OBJECT (EXISTENCE)

- v-BUSINESSL^YER ERRORS
- yElS LAYER ERRORS

^ EIS DRIVER TESTED FOR SIMPLE EXAMPLE
y A L L DATABASES MODIFIED CONSISTENTLY

v' INTERACTION ERRORS

Fig. 3. Part of a QESA Quality Model for BeesyCluster's Testing

I Dependability (25%; 0.46)
i Satisfaction (25%; 0.76)
Functionality (25%; 0,86)
Flexibility (13%: 0,82)
Performance (13%; 0,41)

I Dependability (25%; 0.61)
i Satisfaction (25%; 0,76)
I Functionality (25%; 0,87)
Flexibility (13%; 0,82)
Performance (13%:0,77)\

Fig. 4. Quality before Improvement

7 Summary

Fig. 5. Quality after Improvement

The model used, especially the quality issues specific for J2EE applications and
identified above, can make desien. imnlementation and develooment of other similar

www.manaraa.com

190 PmvelCzarntil

applications easier and faster. Products for design, implementation and testing for other
J2EE applications can be validated against items identified in this paper while QESA
can produce a quantitative quality value which can be compared to other systems.
One of the original goals of the QESA initiative was the creation of distinct models,
including translation functions (how the values of lower level nodes ai-e translated to
higher levels), coefficients of translation functions, metrics and measures specific for
the given application class and the given development phase. This is especially useful
in case of distributed applications due to their complex nature. The model proposed in
this work is based on real world errors encountered during the development of a large
production J2EE-based application and can be either used as provided or improved.

References

1. Czarnul, P., Bajor, M., Banaszczyk, A., Buszkiewicz, P., Fiszer, M., Fraczak, M., Klawikowski,
M., Rakiej, J., Ramczykowska, K., Suchcicki, K.: The ai'chitecture of beesycluster: a
front-end to a collection of clusters accessible via www/web services. In: Proceedings of VI
Conference on Computer Engineering (KKIO 2004), Gdansk, Poland (2004) 437-450 in
Polish, ISBN 83-204-3051-8.

2. Czarnul, P., Bajor, M., Fraczak, M., Banaszczyk, A., Fiszer, M., Ramczykowska, K.: Remote
task submission and publishing in beesycluster : Security and efficiency of web service
interface. In Springer-Verlag, ed.: Proc. of PPAM 2005. Volume LNCS 3911., Poland (2005)

3. Czarnul, P.: Integration of compute-intensive tasks into scientific workflows in beesycluster.
In: Proceedings of ICCS 2006 Conference,, University of Reading, UK, Springer Verlag
(2006) Lecture Notes in Computer Science, LNCS 3993.

4. Sun Microsystems: BluePrints, Patterns (2006) http://java.sun.com/blueprints
/patterns/index.html.

5. Alur, D., Crupi, J., Malks, D.: Core J2EE Patterns: Best Practices and Design
Strategies. 2nd edn. Prentice Hall / Sun Microsystems Press (2003) http://www.
corej2eepatterns.com/index.htm, ISBN:0131422464.

6. Sun Microsystems: Code Conventions for the JavaTM Programming Language (1999)
7. O'Hanley, J.: Collected Java practices (2006) Canada, http://www.javapractices. com/Table-

OfContents.cjp.
8. Fenton, N.: Ensuring quality and quality metrics. In: Software engineering. MIKOM (2000)

ISBN 83-7279-028-0.
9. Emam, K.E., Drouin, J.N., Melo, W.; SPICE The Theory and Practice of Software Process

Improvement and Capability Determination. Wiley (1997) ISBN 0-8186-7798-8.
10. Sedigh-Ali, S., Ghafoor, A., Paul, R.A.: Software engineering metrics for cots-based systems.

IEEE Computer Society Press, Computer 34(5) (2001) 44-50 ISSN:0018-9162.
11. Czarnul, P., Krawczyk, H., Mazurkiewicz, A.: Quality driven development methodology for

network applications. In: ISThmus'2000 Conference, Poznan, Poland (2000)
12. Fredericks, M., Basili, V.: Using defect tracking and analysis to improve software quality.

Technical report, Experimental Software Engineering Group, University of Maryland, College
Park, Maryland USA (1998)

13. Czarnul, P., Grzeda, K.: Parallelization of electrophysiological phenomena in myocardium
on large 32 & 64-bit linux clusters. In Springer-Verlag, ed.: Proceedings of Euro PVM/MPI
2004, 11th European PVM/MPI Users' Group Meeting. Volume LNCS 3241., Budapest,
Hungary (2004) 234-241

14. Nilo Mitra, Ed.: SOAP Version 1.2 Part 0: Primer. W3C Recommendation. (2003)
http://www.w3.org/TR/soapl2-partO.

www.manaraa.com

Automatic software validation process

Maciej Dorsz', Mariusz WasielewskP

' Poznan University of Technology,
60-965 Poznan, Poland

Maciej .Dorsz@cs.put.poznan.pl
^ Projekty Bankowe Polsoft Sp. z o.o,

60-965 Poznaii, Poland
Mariusz.Wasielewski@pbpolsoft.com.pl

Abstract. This article presents the Automatic Software Validation tool (ASV),
which is deployed in one of the Polish software companies. This system helps
to automatically test web applications, create its simulations, which are helpful
during end-user training, and then test those simulations. The tool was invented
to speed the process of testing one of the company's applications working in
more than 12 Polish financial institutions. The clients' system settings and da
tabase schemas are different, therefore while introducing a new system func
tionality it is not enough to test one system version, but repeat tests for all 12
different parameters settings. Manual testing is very time-consuming and ex
pensive. Every night ASV tool, basing on CVS, ANT and HttpUnit, fully auto
matically prepares the current system version, deploys it twelve times on Tom
cat server with different parameters settings, executes tests, creates application
simulations, tests those simulations and sends a summaiy report.

1 Introduction

Rapid and almost aggressive software development, as can be noticed in the recent
yeai-s, calls for radical testing effort [1]. Inadequate software testing costs the econ
omy of United States about 59 billion dollars every year. It has been estimated that
possible improvements in software testing infrastructure could reduce that cost at
about 22 billions [12]. Models and standards related to software development such as
CMMI, extreme Programming, ISO 9001:2000, RUP place great attention to careful
vahdation of the final product [2,3,4,8]. This article presents the way of putting soft
ware testing infi-astracture improvements into practice.

About two years ago one of the Polish software company applications was de
ployed in more than 12 financial institutions. In this article it will be named:
AMLPortal (Anti Money Laundering Portal). Although application source codes are
the same for all customers, unfortunately, all of the customers have got different pa
rameters settings. Those parameters customizes presentation and business tires ac
cording to individual customer's requirements. Moreover, there are some differences
in database schemas. The team developing this product prepared Ant script to gener
ate a ready for deployment application [1]. AMLPortal is written in Java, therefore

Please use the foUmring format when citing this chapter:

Dorsz, M., Wasielewski, M., 2006, in IFIP Mtemational Federation for Information Processing, Volume 227, Software
Engineering Techniques: Design for Quality, ed. K. Sacha, (Boston: Springer), pp. 191-197.

www.manaraa.com

192 Maciej Dorsz, Mariusz Wasre/ewskr

Ant script simply generates .war file. Then, CmiseControl was installed to take care
of storing in CVS repository only versions which can be compiled [5,6]. With time,
the problem of software validation process appeared.

AMLPortal is used to search for amount, suspected and related banking transac
tions. One of its functionality is manual transaction adding to the AMLPortal data
base. The transaction form has about 45 different fields, such as: transaction number,
date, owner data, beneficiary data, addresses, bank account numbers, remarks etc.
Almost each of the customers uses unique form to add a bank transaction manually.
The form can have additional fields, which may be used by one or some of the cus
tomers. Moreover, the clients uses different data validation. Therefore, not fulfilled
beneficiary address for some clients is correct, for some it is shown as a warning, and
for the others it is marked as an error. The example is presented in Figure 1.

' '
Parameters 1

(for Bank 1)

Source codes
fthe same for all clients)

1 '

1 '
ParametErs_2

(for Bank2)

i r

Parameters_3
(for Bank31

IF

Parameters 4
(for Bank4)

/wfllfansacOoR
tas:

Owlif?

DK«irtId:

JofenSffliih

Poiand _* j

AB1234

C o * ;

:1' *«C

teiirtB

IPWIP
Mmt 2]

jJoteStr-A

AB12M

I ' * • IjohnSnih

! towUi

PoijriS j „

Gdar-sk j j

the same i~
prmentaSai,
txjtdSferait
data vMaSon

Fig. 1. The example of different presentations and data validations

The difficulty of testing the AMLPortal application will be shown on the example.
Let's consider the case that a computer scientist changed a form for manual bank
transactions adding. Because the system sorace codes, JSP pages, libraries, etc. are
the same for all customers, this person introduced the change only once. However to
carefully test it, one needs to test a new AMLPortal version 12 times, namely, for
each set of the client's specific parameters settings. It is very time-consuming, expen
sive, and monotonous. Therefore, an application for automatic software validation
was proposed.

www.manaraa.com

iiitomatic software validation process 193

2 Automatic Software Validation

The Automatic Software Validation tool (ASV tool) builds a system version, deploys
it on the Tomcat server with client's specific parameters, tests it, deploys the same
system version with parameters for next client, test it, etc. and finally send a report. In
Figure 2 the diagram outlining the process of automatic software vahdation is pre
sented.

basing on CVS

^ '

,

basing on Tomcat

'

*•
Compile version (CruiseControl)

+
Build vereion (Ant prepares .war)

i
Undeploy version

*
Prepare database scliema*

*
Deploy version (.war file)

*
Deploy parameters (client dependent)

*
Execute HttpUnit tests

^
Run ATG tool (generate simulation)

*
Execute HttpUnit tests (for the simulation)

*
Send results via e-mail

..--—*——.^
d S'°P Z>

^

forei ch client

Fig. 2. The diagram outlining the process of automatic software validation

The diagram as well as an asterisk meaning are explained in detail in following
sections.

2.1 Version compilation

CruiseControl periodically compiles the head version stored in CVS repository. If the
compilation process fails, the application development team is obliged to repair the
system version or rollback introduced changes. Therefore, in the end of the day, the
head version can always be compiled.

www.manaraa.com

194 Maciej Dorsz, Mariusz Wasielewski

2.2 Building tiie version

AML Portal is a web application written in Java. ASV tool uses Ant script to generate
the cun-ent system version. Ant script, on the basis on the head version stored in
CVS, prepares .war file.

2.3 Undeploying version

On the Tomcat server, the undeployment process is easy. It is enough, to stop the
server, delete content of WEB-ESTF directory as well as the content of WORK direc
tory.

2.4 Preparing database schema

This stage is marked in Figure 1 with an asterisk, because currently is not fiilly auto
matic. Application development team has a mirror of each client database schema, for
example bankl_head database schema resembles the database schema for the head
version of the application for client bankl. Therefore, there are 12 database schemas.
A computer scientist willing to change the database schema is obliged to inform a
person responsible for database to update all head database schemas.

Therefore ASV tool works only with correct database schemas. Moreover, the da
tabase schemas names are all time the same, for example bankl Jiead, bank2_head
etc. ASV runs SQL commands to prepare a given schema for tests.

2.5 Deploying version

ASV tool unpacks .war file and copies it to Tomcat WEB-INF directory. If ASV
worked with more sophisticated application servers, the deployment procedure would
be more complex. However, regarding Tomcat server it is really simple.

2.6 Deploying parameters

Every client has individual system parameters. For example bankl may have parame
ter called is_beneficiary_address_recquired set to ' 1' that means it is required. An
other one, may have it set to '2 ' what would mean that it will be marked as warning.
The others may have it set with value designating 'not required'. For AML portal way
of storing parameters is quite sophisticated, for the sake of clarity, it will be assumed
that each client has a separate parameter file called: bankl_AMLPortalparameters,
bankl_AMLPortalparameters, etc. In such files are all parameters describing system
presentation and business login nuances, but also many other like database coimec-
tion settings, mailer settings etc.

ASV tool simply copies the right parameters file to Tomcat WEB-INF/etc direc
tory. Then ASV tool starts Tomcat server.

www.manaraa.com

A utomatic software validation process 19 5

2.7 Executing HttpUnit tests

There is only one set of HTTP tests for AMLPortal application [7]. It means that
automatic tests do not check client's specific functionality. They are general and
focus on system fiinctions which are used by all customers. Therefore, the option
prepared and visible only for one client is not tested in this way. However, the main
AMLPortal functionality concerns bank transactions management: inserting it into
system, searching for amount, suspicious and related transactions, and exporting the
founded transaction to an external institution, called: The General Inspector of Finan
cial Information [10].

In order to make HttpUnit tests general the test which adds banking transaction has
to add a bank transaction with filled in field beneficiary address. Then regardless of
the parameter is_beneficiary_address_recquired value the bank transaction can be
added properly.

2.8 Use ATG tool to generate AMLPortal simulation

AMLPortal was deployed in 12 institutions. It had meant many end-user training. In
order to support that process Automatic Training Generation (ATG) tool was in
vented [4,5]. ATG on the basis on HttpUnit tests saves subsequent .html pages.
HttpUnit uses WebConversation object to obtain connection with web page. Then it
can set and get html form elements' values, clicks buttons and links. This tool bases
on html protocol.

Then it changes their content by adding JavaScript. Finally, Automatic Training
Generation tool prepares the simulation of a real application. The simulation is a set
of .html pages powered with JavaScript. The end-user may "start" simulation and use
it almost as a real system. Because the simulation is a set of static pages, the end-user
does not need network connection, running database with an AMLPortal schema and
application server.

Automatic Software Validation tool runs Automatic Training Generation tool to
prepare AMLPortal simulation.

In case when generation simulations are not needed, processing concerning ATG
should be excluded fi-om application testing.

2.9 Executing HttpUnit tests for the simulation

Next, the same tests as were used for testing the real appUcation are used to test gen
erated simulation. Because the simulation visual side resembles the original applica
tion, and was created by saving .html files, the fields, links, and button names and
their arrangement are the same. In order to test the static simulation pages, they are
deployed on application server. Therefore in practice, HttpUnit is testing a web appU
cation, which, in fact, is a set of static pages.

www.manaraa.com

196 Maciej Dorsz, Mariiisz Wasielewski

2.10 Sending results

After repeating steps from 2.3 to 2.9 twelve times, ASV tool prepares a report and
sends it via email. A report structure is shown in Figure 3.

-—start: 2006.02.03-
Bankl: passed
Bank2: passed
Bank3: failed
Bank4: passed
Banks: failed
Bank6: passed
(...)

BankS: Executing HTTPUnit tests : AddingTransactionTest
<exceptions part>

BankS: Deploying parameters:
FileNotFoundException (file: BankS.parameters)

-—end: 2006.02.03—

Fig, 3. The report structure

3 ASV in practice

The Automatic Software Validations tool can be used for the testing of one system
version with only one parameters setting. However, it is really profitable for testing a
versions with a few sets of parameters.

Table 1. Some of the ASV tool properties

Property name Value Comment
serverjath
war_path
properties__path
simulationsjath
start_time
clients_list
CVSROOT

(...)

C:\tomcat
D:\AMLPortal\war
D :\AMLPortal\properties
D :\AMLPortal\simulations
02:00
bankl,bank2...
:pserver:cod@10.5.5.10:

/amlportal

Tomcat installation path
generated AMLPortal .war path
path to clients properties files
path to generated simulations
ASV starts at 2:00 a.m.
#list of clients
cvs repository path

ASV tool is deployed in one of the Polish companies, whether it will be an Open
Source application has not been decided yet. It would be not difficult to adapt ASV to
another envirormients. To use it one needs CVS repository. Ant script to compile and

www.manaraa.com

Automatic software validation process 197

generate versions and HttpUnit tests. It is not necessary to use CruiseControl, also
simulation generation with ATG tool may be used on demand. ASV tool properties
are placed m properties file, some of them are shown in Table 1.

4 Summary

This article presents Automatic Software Validation tool, which allows one to auto
matically test the application head version with many different parameters settings.
Basing on CVS repository, Ant and HttpUnit this tool can automatically prepare sys
tem version, then for each client deploy it, execute tests, create an application simula
tions and even tests those simulations. Finally, ASV sends a report.

The next development phase for ASV tool means the development of GUI side as
well as integrating it with CruieControl reports. Automatic preparation of database
schemas would be really helpful. Moreover, statistics about automatic testing and its
results should be gathered.

References

1. Ant, http://ant.apache.org
2. Beck, K., Extreme Progi'amming Explained. Embrace Change. Addison-Wesley, Boston,

(2000)
3. CCTA, Managing Successful Projects with PRINCE 2, The Stationary Office, London

(2002)
4. CMMI Product Team, Capability Maturity Product Integrations (CMMI), vl.l, Staged

Representation, CMU/SEI-2002-TR-004, Software Engineering Institute, Pittsburgh PA,
December (2001)1. Jefferies, R., eXtreme Testing: Why aggressive software development
calls for radical testing effoit, STQE Magazine, March/April (1999)

5. Concurrent Versions System, http://www.nongnu.org/cvs
6. CruiseControl, http://cruisecontrol.sourceforge.net/
7. HttpUnit, http://HttpUnit.sourceforge.net/
8. International Organization for Standardization, Quality Management Systems - Guidelines

for perfonnance improvements, ISO 9004:2000, ISO publication, December (2000)
9. Maciej Dorsz, Jerzy Nawrocki, Anna Demuth: ATG 2.0: the platform for automatic genera

tion of training simulations, Software Engineering: Evolutions and Emergining Technolo
gies, lOS Press, Krzysztof Zielihski, Tomasz Szmuc (ed.) (2005)

10. Ministry of Finance, Poland, http://www.mfgov.pl
11. Rational Software Coiporation, Using Rational Robot (2001)
12. RTI, National Institute of Standards and Technology, The Economic Impacts of Inadequate

Infrastructure for Software Testing, Final Report, May (2002)

www.manaraa.com

j2eeprof - a tool for testing multitier applications

Pawei Ktaczewski and Jacek Wytr^bowicz

Institute of Computer Science of Warsaw University of Technology
P.Klaczewski@elka.pw.edu.pl, J.Wytrebowicz@eIka.pw.edu.pl

Abstract. Quality assurance of multitier application is still a challenge. Especially
difficult is testing big, distributed applications written by several programmers,
with the use of components from different sources. Due to multi threaded
and distributed architecture, their ability to be observed and their profiling are
extremely difficult. Jleeprof is a new tool developed for testing and profiling
multitier applications that run in the J2EE environment. The tool is based on the
paradigm of aspect insertion. The main goal of jleeprof is to help in fixing
of integration errors and efficiency errors. This paper presents the concept of
jleeprof and gives some insides of jleeprof development. On the beginning
we give some introduction to the methods of software profiling, and a brief
characteristic of existing profilers, i.e., JFluid, Iron Track Sql, Optimizelt Server
Trace and JXInsight. Next we present the architecture of jleeprof, and we describe
how it collects data, what protocols it uses, and what kind of analysis it supports.
On the end we demonstrate how jleeprof works in practice. In conclusions we list
the strong and weak points of this tool, which is still in a beta version. Jleeprof
is planned to be offered as an open source for the programmer community.

1 Introduction

Softvi'are testing and software profiling are time consuming tasks, especially during
development of multitier, distributed applications. Sometimes these tasks take more
time than coding. They are crucial when the target application is safety or business
critical. We mean by testing the process of defect discovery in a developed code. We
mean by profiling the process of performance analysis of an application.

Because Java Platform Enterprise Edition (J2EE) is a widely used programming
platform for developing and running distributed multitier architecture applications, we
have focused our attention on testing and profiling applications that run in the J2EE
environment. The result is jleeprof [7] - a new tool to help in fixing of integration
errors and efliiciency errors. Integration testing and profiling need very similar methods
and tools. We shortly describe them.

To make not frequent or exceptional conditions testable we have to extend the
tested application to make controllable its execution flow. During an execution flow a
programmer collects selected data for subsequent analysis. Selection of the data depends
on programmer aim, it could be; remote function checking, bottleneck discovery, time
consumption of selected functions and memory consumption. In general, there are two
methods of data gathering: sampling and tracing oo. The advantage of sampling is that
this method slightly influences the tested application in contradiction to the tracing

Please use the following format when citing this chapter:

Klaczewski, P., Wytr^bowicz, J., 2006, in IFIP International Federation for Information Processing, Volimie 227, Software

Engineering Techniques; Design for Quality, ed. K. Sacha, (Boston: Springer), pp. 199-210.

www.manaraa.com

200 Pawet Ktaczewski, Jacek Wytr^bowicz

method. The advantage of tracing is the possibility to achieve very high accuracy but
when accuracy is higher - the execution time is more and more disturbed.

Extensions that make the execution flow controllable are included in the application
code by a programmer. Sampling can be performed without any modification of the
appKcation code. Tracing can be achieved by altering the code or by modification of its
environment, or both. The Java Platform Debugger Architecture (JPDA), which is a
collection of APIs to debug Java code, is a good example of a tool for envii-onment
modification. A disadvantage of JPDA is the limited set of low-level events that the
programmer can observe. The abstraction level of virtual Java machine is not suitable
for J2EE application analysis. The programmer gets too much low level data, which are
difficult to analyze. Altering of the application code can be done by hand, can be
processed by a compiler (e.g., as for gprof Unix tool), or after compilation. There are
Java libraries, e.g., BCEL^ ASM [3], which allow altering a Java bytecode during
loading. The progranamer has to point where and how the automatic code altering
should be performed.

The amount of data collected during an application run is usually huge. Sometime
some compression or aggregation methods have to be used for their collection. A
programmer needs to have some tools for filtering the collected data and for their
visualization in an interactive manner. G. Ammons, T. Ball and J. R. Laius [1] have
proposed to build a structure called Calling Context Tree (CCT) - as an aggregation
method. Every tree node keeps some measurements of an executed function. Any path
in the tree represents a possible execution sequence of modules (the module can be a
method, a component, a layer, or a node belonging to a distributed system). Figure 1
depicts an exemplary execution path of a function X that executes 6 modules (AB
notation means that A module calls B module). A tree representation is more expressive.

A—•B
B—*c
B—*D
D—*E

l - D —]

(a) (b)

Fig. 1. Execution path visualization a) sequential, b) context free

It helps to find bottlenecks related to different load of data or user connections. There
are more ways of execution path visualization as Fig 2 shows. Nowadays profilers
generate a layered representation of full tree of execution calls (Fig 2b). The width of
every rectangle may depict execution time of relating module. Complex applications
give very big trees. To make them more readable reduced graphs can be generated (Fig.
2c, 2d). Most profilers allow for simple filtering of presented data with predefined
set of views. However there are exceptions: a programmer using ejp^ can implement
own filters. XDSE profiler [2] stores full execution trace in an XML database. Next a
programmer can define filtering by XQuery language and select a visualization form.

' http://jakarta.apache.org/bcel
^ http;//ejp. sourceforge.net

www.manaraa.com

jleeprof- a tool for testing multitier applications 201

M(A(BOCO)D(C())A(B()C())D(CO)A(BOB()C()C()))

(a)

M

M
/ \

A D
/ \ / \

B C B C A C

(c) (d)

M
(e)

Fig. 2. Execution path visuaKzation a) layered representation, b) Ml tree of execution calls, c)
reduced call graph, d) context call tree, e) trace graph

Profiling of a distributed system is difficult. Every distinct element has to be
observed independently. Next, a profiler has to correlate collected data before filtering
and presentation. A correlation method based on independent clocks is not accurate and
leads to interpretation errors. Much efficient is to include tracing into a communication
mechanism used by separate instances. Authors of [8] describe a tool that traces TCP
messages. For better efficiency, a profiler could use some marking of messages that
concern the analyzed application/purpose. Pinpoint project [6] is based on modification
of Jboss^ application server - in this way a distributed application, which works on
Jboss servers, can be easily and efficiently traced. When a programmer uses CORBA,
then we can take advantage of built in interceptor mechanism for message marking. The
interceptor is a function written by the programmer and called during conmiunication.

There are several cormnercial profilers addressed to J2EE environment, but we do
not know any such a tool from public domain. Profilers created for Java programmers,
not only for those who use J2EE, are more numerous. Let take a look on some of them
- the most interesting in our opinion. JFluid profiler [5], from Sun Microsystems,
works only with the NetBeans programmer framework. It provides some means for
analysis of: memory consumption, execution time and execution flow. Programmer can
point some Java methods for analysis. JFluid process the code statically to discover
all methods, which could be executed by those selected. Next it alters them to make
them traceable. It visualizes only the traces that belong to the execution context of
selected methods. The altered code has constant time overhead, that allows subtracting
it from measured values, and present more accurate data. Because JFluid co-works
with extended (tuned for it) virtual Java machine it is a fast and efficient tool.

Iron Track Sql^ is a free tool for performance monitoring of Java applications that
interact with databases. It builds a log of every database query, its time and duration. It
allows for some filtering, e.g., to register only these queries whose duration overcomes

' http://www.jboss.org
* http://www.irongrid.com/catalog/product_info.php?products_id=32

www.manaraa.com

202 Pawel Ktaczewski, Jacek Wytr^bowicz

a defined threshold. It is based on a database proxy, which makes all required logs. The
programmer has to use the p6spy driver (an element of Iron Track Sql) in place of
standard jdbc driver.

Optimizelt Server Trace is a Borland profiler addressed to J2EE. It can gather
data using probing or tracing. It can monitor memory consumption. With this tool
the programmer can visualize execution paths as a context tree or as a full tree of
execution calls. Optimizelt presents j2ee services trace using sets of abstract words. In
example word "ejb load" stands for ejb load life cycle method. Tool hides application
server internal implementation of ejb load and presents it to user in simplified form.
Profiling statistics ai-e then more readable and free of unnecessary information. This
feature makes Optimizelt much more effective tool for J2EE application tracing than
standai-d profiler. Optimizelt can point hot spots, can display execution time of every
layer, e.g.: JDBC 23,68%, JNDI 15.31%, servlets and jsp 57.84%, EJB 3,17%. It can
even register and visualize RMI communication.

JInspired company offers the JXInsight profiler. This tool is very similar to Optimizelt
Server Trace. The difference is that JXInsight has more functions for monitoring of
database queries. It can display correlations between distributed events using CORBA
interceptors. Both Optimizelt and JXInsight are very complex and powerful tools,
which allow multitier visualization of execution paths.

There are many other profilers but most of them suit only development of standard
Java programs running on a single machine. They are inefficient for development of
J2EE applications, which are distributed and use a server code. Usually the programmer
does not know the server code (it is a black box for him). And the server code is
a significant part of the application. The only corrections and optimizations, the
programmer can make, are inside his code. Hence only tools like Optimizelt and
JXInsight can really help to profile J2EE appHcations.

2 j2eeprof insides

Jleeprof is profiler designed for applications running in J2EE environment. J2EE
provides variety of services. Programs work in a container i.e., servlet container or
ejb container. Container provides services, can manage component life cycle and
enhance program behavior. The way program uses services can be specified in code or
configuration descriptor. When configuration is used it is impossible to inspect program
behavior only by reading its code. This makes testing more difficult to the programmer.
Another problem arises, when J2EE appHcation is profiled using standard Java profiler.
There is huge amount of container implementation code execution registered together
with program code. The performance impact is large and results contain plenty of
superfluous information.

In order to capture accurate view of execution flow, j'2eeprof uses tracing. Jleeprof
comes with ability of selective program tracing. It registers J2EE services and program
execution at high level of detail. By inspecting trace programmer can find out all the
interactions of J2EE services with program. The tool has significant ability to shape
profiling scope, Jleeprof addresses also distributed nature of ejb components. It is able

www.manaraa.com

jleeprof - a tool for testing multitier applications 203

to track communication between remote ejb components and deliver distributed system
trace,

Jleeprof is designed for profiling applications that run in a distributed environment.
Thus tool itself is distributed as well. There are three major modules oi jleeprof: data
collection module, transport module and visualization module. The data collection is
installed on distributed system nodes and acts as client in the client-server jleeprof
architecture. Visualization module is responsible for trace analysis and visualizations.
The data is transported from remote data collections modules to visualization module
by transport module.

2.1 Data collection

Data collection module uses tracing method to collect profile data. Its implementation
is based on the aspect oriented programming (AOP). Aspect is a program module that
implements some common functionality and has no dependencies on other program
modules. AOP consists of two elements: aspect weaver and composition language.
Aspect weaver is responsible for composition of aspects and other modules into final
application. Composition language controls the weaver. Jleeprof uses Aspectwerkz^,
open source AOP library, as a basis for data collection module. Aspectwerkz weaver is
capable of dynamic aspect insertion. This feature enables profiler to temporarily modify
tested code and change profihng scope on every program execution. Aspectwerkz uses
AspectJ^ composition language. The point of program code, where aspect can be
inserted, is called join point. It can be i.e., a method or a construction invocation.
Pointcut is Aspect J definition that pick out a set of join points. Aspect J gives jleeprof
capability to define profiling scope with detail. Important feature in J2EE environment
is that a join point can define interface and polymorphic execution. J2EE is specified by
a set of interfaces. Jleeprof can profile application server standard services by tracing
them at the interface level. This method provides the right level of abstraction. Tracing
implementation details of application server not only has negative performance impact,
but also has no value for the application developer, as he cannot modify server code. Still
the appUcation code can be traced with much greater detail - up to every method call.

Data collection module implements a set of aspects. Data collection aspect is
responsible for registering information on program execution. AOP composition
language allows mixing of aspects in order to register traces on different detail level.
Data trace representation (see Fig. 3) in jleeprof consists of 4 elements. PathNode
is a node of trace path. PathNode can contain other PathNode in the way it make
call tree. PathNode is a base class for a concrete node, which may represent method
execution or distributed call. Nodes belong to an execution thread, which is represented
by ThreadNode. SystemNode is a node of distributed system. System abstracts whole
observed system. The representation can describe nodes on different level of abstraction.

There are 2 generic aspects that trace method executions: MainAspect that registers
only method signatures and Parameters Aspect that registers also parameter values. An
aspect collects information about several attributes: start and end time, information on

^ http://aspectwerkz.codehaus.org
* http://www.eclipse.org/aspectj

www.manaraa.com

204 Pawet Kiaczewski, Jacek Wytr^bowicz

System
1 0..*

SvstemNode
id
name

1 0..*

ThreadNode
-name
-group

1 0..*
Path Node

0..*

0..1

Fig. 3. Trace model

exception, path node name (e.g. method signature) and execution thread. There is also
one additional attribute - category that is specified in aspect definition, and it is used
later for data analysis.

2.2 Data transport

Gathered data are transmitted by transport module. The module consists of three parts:
data sender, transport protocol and data receiver. Data transport module can write data
to file or send over TCP/IP. The most important element is the protocol. Jleeprof uses
binary protocol that is built in a way to keep network traffic low. We have executed several
tests to measure j'2ee/7ro/ overhead. The results (Table 1) have shown that the most time
consuming is I/O, The more data is sent the more impact on performance is made (see
test 3 and 4 in Table 1). During execution of test 3 all gathered data been discarded,
during execution of test 4 the same data have been written into a file. I/O slow down
factor was about 6. Addition of a simple compression method resulted in better overall
performance. J2eeprof uses dictionary compression for most frequently sent data - event
labels. MainAspect sends approximately 30 bytes per start method event and 22 bytes
per exit method event. Executions with tracing turned off (test 1) and with AspectWerkz
(test 2) empty aspect have shown a difference of performance overhead. Encoding
overhead (test 3) is 3,232.98 ns but 509.68 ns (test 2) is the effect of using AspectWerkz
and cannot be avoided. Write to the file (test 4) slows down by 17,421.38 ns. Jleepwf
performs almost twice better as Log4J^ (test 7). The maximum time was taken from
jleepwf statistics. It indicates that writing into a file gives more stable efi'ects compared
to sending over TCP/IP, however the second choice is much more convenient for a user.

Tab. 1. Measured performance overhead

no

1
2
3
4
5
6
7

test

no aspects
NullAspect
MainAspect (no I/O)
MainAspect (file)
MainAspect (tcp local)
MainAspect (tcp)
Log4J (file)

mean time[ns/per call]

31.63
509.68

3,232.98
20,654.36
33,639.00
36,767.00
41,199.31

max time[ms/per call]

58
308
949

2.3 Distributed tracing

Jleepwf can profile distributed J2EE systems. Execution path on each distinct node of
analyzed system is recorded. But it is also required to match right local paths and

http;//logging.apache.org/log4j

www.manaraa.com

jleeprof - a tool for testing multitier applications 205

reconstruct distributed path. Tagging messages exchanged between nodes can do this.
This method has top accuracy over others, and is not affected by time differences of the
nodes. EJB protocol - RMI/IIOP supports sending additional information in protocol
tier, without changing interface on an application tier (Fig. 4). Corba Interceptor
documentation [4] describes this feature. J2eepwf tracing mechanism can be enabled
in the configuration file of application server, with no need to modify program or
server code. The method is protocol dependent; jleeprof comes with implementation
for standard EJB protocol RMI/IIOP and Jboss RMI. But this solution is well suited
for J2EE environment. J2EE specification requires application servers to provide
transaction support and user authentication over remote calls. These services are defined
in application configuration descriptors. Thus communication protocols must be able do
support rpc-level communicates tagging. Jleeprof inject into EJB communication apart
of transaction id and user information his own data.

client

1
-H server

D A
'

application tier

protocol tier

D information passed by application
A extra tracing information passed by protocol tier

Fig. 4. Protocol tracing

Distributed paths require trace model to be improved. Model is extended by addition
of two new nodes (PathNode subclasses). RPCCallNode (RC) represents an rpc call
on the client side. RPCReceiveNode (RR) represents an rpc call on the server side.
Figure 5 depicts reconstruction of a distributed path. On rpc call event - jleeprof tags
outgoing message with rpcid - auto generated id, unique in jvm scope, and node
jc?(specifled in configuration file). On rpc receive event - rpcId tag and node id are
added to RR event. Node id attribute is saved in RR.sourceNodeld field. Paths merging
is performed by matching RC-RR pairs. Match criteria is:
1. RC.rpcId=RR.rpcId
2. RC is registered on system node defined in RR.sourceNodeld

^-T-B-T-C i - -RSrp-E—F A-pB-p -C
L j) — C 1 L , D — C

l -RC ' ' - H - p F " - R C - R R T - E — F

- H ^ F

(a) (b) <c)

Fig. 5. Reconstruction of a distributed path a) local path on client side b) local path on server
side c) completed distributed path

www.manaraa.com

206 Pawet Ktaczewski, Jacek Wytrqbowicz

lA Visualisations

Jleeprof supports several visualizations. Profiler provides data analysis on summarized
trace data as well as on raw trace. Many of these visualizations are found in other
tools, but distributed trace view is an original extension of them.

Jleeprof can summarize trace in tbrm of CCT and flat list. Both views display total
number of invocations, total, mean, minimum and the maximum execution time. CTT
view provides "drill up" and "drill down" functions. "Drill up" displays all contexts in
which selected node was called. "Drill down" selects all possible executions rooted in a
selected node.

Raw trace can be visualized as a graph or tree. Figure 6a shows graph of a trace.
The Graph is similar to tree view but every node has a rectangle form. The length and
position represents execution time. For the purpose of more readable view, there is
an option for displaying only top-level trace nodes (Fig. 6b). Raw trace data can be
queried. The result is indicated in graph view (Fig. 6) by changing color of nodes. Raw
trace views are connected each other. When user selects node in the tree list, focus in
other view is set to this node.

t J U' '[l'U"U"L3a-

-^

b)

rrm filtered nods

Fig. 6. Trace visualization a) detail, b) summary

Ability to collect distributed trace is quite uncommon in profilers. Thus there are
not many ready to use solutions. Distributed trace requires special view. Jleeprof
comes with original solution to this problem.

Figure 7 depicts "rpc view". The view captures distributed path on all nodes it
belongs to. Apart of the path itself, the view contains also context of path on each
distinct node. The view is horizontally divided in two zones. On the top, there is
distributed path. On the bottom, there is context of the fragment of graph view. The
view has also several vertical zones, each on every node along the distributed path.
Double vertical lines divide system nodes. Doted lines mark time margin zone. In
margin zone the top part of view is frozen on the contrary to the context shown in
bottom part of the view. Timeline in context view is wider than in distributed path
view. Thus in a case when distributed path execution of given system node is very
short, still the context view show some information.

The path on Fig. 7 starts on Node 1, paths a and b. Execution of c is an rpc call.
That part is shown on left part of the figure. D path is executed on Node 2 - middle
part of the graph. Paths a,b,c are marked with grey color as they do not belong to Node
2. Last part of the figure, on the right, displays end of paths back on Node 1.

www.manaraa.com

jleeprof - a tool for testing multitier applications

System border

207

Time margin

Nodel Node 2
l inHnnmi

t r o t tr 'W

en

Nodel

T TIF

Fig. 7, Distributed trace view

3 j2eeprof in practice

Jleeprof was tested with Rubis^ [9] - J2EE auction site benchmark. Rubis was created
to compare performance of several distinct implementations of the same program. Each
implementation uses different framework or technology. Jleeprof was tested with two
of them. First is BMP_EntityBean_ID_BMP that is based on Entity Beans and bean
managed persistence (denoted as bmp). The second EJB_CMP2 (denoted as cmp)
uses Entity Beans, Session Facade design pattern and container managed persistence.
Two of Rubis functions where choosen for the test. SearchltemsByCategory shows
list of auction items. The second RegisterUser registers new auction site user. These
functions are very different. First one is data intensive read only function, while the
second is transactional read and write function. Profiling scope included all Rubis code
method calls and tracing of JDBC and JTA services on interface level. Table 2 presents
performance overhead of j2eeprof in J2EE enviroment.

Test were performed on the open source application servers; Jboss 3.2 and JOnAS
4.5.3. JOnAS was configured to use iiop protocol, profiling scope included protocol
tracing (using CORBA interceptors). Rubis comes with dedicated load test tool. Load
tests were set to run for 5 minutes with 10 virtual users. Test where performed on
AMD Athlon XP 1600+, 756RAM, Linux Slackware 10 operating system.

Rubis tests contain random factor, thus test count varies between tests. It also depends
on test performance. Jonas bmp test with jleeprof has very large overhead and test
count is much lower than test without profiling. Jleeprof performance overhead factor
varies from 1.1 in jboss cmp test to 56.77 in jonas bmp test. On Jboss server overhead
is related only to profiling scope. Since number of registered events is reasonably small,
overhead is up to 77%. IIOP protocol ti-acing adds overhead to JOnAS test results.
JOnAS tests performed slower than Jboss tests with exception of SearchltemsByCategory
test (jonas cmp). The reason is that Jboss optimizes local ejb calls, JOnAS not.

Table 3 presents some insights of Rubis implementation derived from trace data.
On JOnAS, bmp performed slower than cmp version but jboss cmp is slower than jboss

' Rice University Bidding System (Rubis), http://rubis.objectweb.org

www.manaraa.com

208 Pawet Klaczewski, Jacek Wytr^bowicz

X)

5

o

s

s

53
LJ
o

'Si

«

>%
o

CS
U

CQ CO

H

1

'y
J3

60 U

> > Ki O

r~~^

F

i

X
a
fc

o

^

bt)

>

Pi

^ s
u S

.^
03 O

^ ^
F

a

X
G3

d

s
G

6J1

>

,. c

a 8

w

M

o
§

M

1
bo
C

o

o

OS
r-i N

C^
(N

f-~
\n

r--
1—1

0\

i n

y i

^

m
f i
C-l

ON
oo

n
s
o

f ^

o X I

^
^

r--

o
u-i

oo

OS
VO
t-~

I N

|-~

VO
ON

0\
O

&
H

X i

rA
O
X

ro
f i
r»l
<N

1—1

(N

in
on
m

o
5—4

•^n
o
T T

m
r - H

-̂̂

00
(• ^

vn 00

&
fi
o
r/i

« o

\r)
• *
lO

-^ t-~

(N

^ m

w-i

-*
00
• *

r<)

>Ĵ
OS

'-̂

r-
f ' l
o_

00
r--

Cu

fci X
w

c
o

o
• a

CO
o;
o

S
«
CO

X

i < t H

u
o.. 1)

c5̂

o
l - H

^~i

00
OS

I N
i n

^
r-

r~

r-
t -
^—1

OS
<N
m
— <

i n
(T)
(N

i n
(T\
m

a\ 00

a
F
b
^o
O

X

<N
i n
r - H

^ _ j

o (N

sn
m

\ D
r-~

i n

i n

,—4

o
f^ l
i n

o
cs

v̂
(N
I N

<N
i n

a^

X

ro
O

X

o
ex;
00

m
1—1
oo
ON
I—1

r-
ON

oo
T f

i n

i n
*—H

"-)
o
m

'^
m i n
f t

^-H

CM

ON
ON
m

-^ r-

cx
R u
CO

fi
O

r̂
r-
>o
i n

i n

T t
ON
'—I

i n

ON

i n

ON

_̂(

r~-
oo
I—1
(Tl

\r>
f •;
t-~-

1 - - '
lO

m
I N
• *

\D

1 — (

m

m

I N
1 — 1

^
d X
M
CO
C
o

^^
o
"K

0)
o

S3
u.

2
ID
ID

I N
^77
C M

y
».
<i)

I N

^
" 1
1 - ^

m
Tt-

o
i ^

NO

• ^

OO
NO

m
f ^

o
ON
I N

! • - -

00

r i .

F o
ro
ro
O

X

m
i n

c-̂
m

i N
r f

m

ON
ON
C I

Tl-
I N

NO
T f

o i n

O J

F
X

C/l

o X

I N
U-i
I N
ON
T—<

m
ON

-*
o
i n '

m
1—1

o
i ^

^

m
V)

'~*

CXI

r-

I N
I - -

&
R
< j

c/3

c
o

^
ND

«) i n
1 — !

^ NO
00
i n

^
y j
00^
i n

^

^
o t N

\n NO

o
I N
<N
f,
•—i

r-
ON

I N
r t -

ON

PH

ti X
c»

c o

•a
cfl
CO

O

a
P

X
3
W

^

n
<f

rJ

8
I M

o
0.(

H)
(N

m r~
ON Tt-
t-~ 00
NO NO
1—1

NO • *
[— r-H
t - i cn

^ i n
I N ON
in_^ <N_
im" t s "

m NO

• * 00
—1 O
^ ON

r - ON
NO ON
rt r -
m i n

r^ m
C-~ 00
^ CN

r - I N
i n i n
m o

m NO
r- -s-

& ft
F b O X
M a:

B a
o o

www.manaraa.com

j2eeprof- a tool for testing multitier applications 209

Tab. 3. Rubis tests results

concurrent threads
jboss cmp

7
Jonas cmp

14
jboss bmp

4
Jonas bmp

18
SearchltemsByCategory

jdbc (time percent)
jdbc/ejb.load
jdbc/ejb.find
rmi (time percent)
rmi/per client call

51.72
1
1
0
0

67.84
0.77
0.00
2.41
2

27.43
1
1
0
0

3.93
1
1

18,60
42

RegisterUser
jdbc (time percent)
jdbc caUs/per client request
rmi (time percent)
rmi/per client call

23.64
11
0
0

42.58
6.33
0.39
2

9,05
6
0
0

34.25
35

2.88
8

bmp. Bmp Rubis implementation calls ejb entity components within web tier that results
in large number of remote calls. Such design is described as J2EE anti-pattern. Jboss
optimizes such calls but on JOnAS there is a remarkable average overhead of rmi call
- 108.975 ms. Cmp version uses better design - Session Facade that minimizes remote
calls, there are only 2 rmi calls in SeachltemsByCategory compared to 42 in bmp test.

The most efficient jdbc use is done by jonas cmp version. Each pair of ejb,find and
ejb.load methods result at most one jdbc call. JOnAS probably makes use of cache
since jdbc calls are performed only in 77% of ejb.find calls in SearchltemsByCategory
test. Other Rubis versions does not perform jdbc optimization, every ejb.load and
ejb.find call results in jdbc.call. Despite of jonas cmp efficiency, the best performer is
jboss bmp. JOnAS and Jboss differ also in number of observed threads. Jboss delegates
one thread to a server cUent request so number of concurrent threads is equal to number
of concurrent requests. JOnAS passes control to different thread in every rmi call.
The protocol tracing mechanism is necessary to obtain complete paths in such case,
although significantly increases performance overhead.

4 Conclusions

The purpose of jZeeprof is to help in testing and profiling of J2EE distributed
applications. Using it a progranmaer can easily analyze interactions between his code
and other components or environment. Programmer does not have to modify his code to
gather data. Jleeprof uses RMI/IIOP to mark and trace communication messages - giving
accurate data about interactions between distributed components. The programmer
decides on which abstraction level he wish to analyze his code, then he controls the trace
information using aspectwerkz library. The advantage of the aspect approach is, that the
programmer can easily monitor the interactions between his code and a J2EE server
code. The strong features of jleeprof are: flexibihty in use, ability to fit gathered data to
programmer needs, and high accuracy of registered traces from distributed components.

A week feature of j2eeprof is remarkable and varied execution time overhead. All
profilers that work on tracing basis, in place of samphng basis, have this disadvantage.
Because jleeprof gathers full execution trace with programmer-defined data, not just

www.manaraa.com

210 Pawet Klaczewski, Jacek Wytr^bowicz

execution statistic, the overhead is higher than other profilers put in. To obtain accurate
time characteristics, the programmer has to take other profiler that works on sampling
basis. Jleeprof is small and simple tool comparing with commercial Optimizelt and
JXInsight profilers. Although it is free, easy to use and we find it very useful.

References

1. G. Ammons, T. Ball and J. R. Larus: Exploiting hardware counters with flow and context
sensitive profiling. In Proceedings of the SIGPLAN '97 Conference on Programming Language
Design and Implementation.pages 85-96, Las Vegas, 1997.

2. C. Anslow, S. Marshall, R. Biddle, J. Noble and K. Jackson; Xml database support for program
trace visualization. In Australian Symposium on Information Visualization, volume 35, 2004.

3. E. Bruneton, R. Lenglet and T. Coupaye: Asm: a code manipulation tool to implement
adaptable systems. In Adaptable end extensible component systems, Grenoble, France, 2002.

4. Interceptors Published Draft with CORBA 2,4+ Core Chapters, Document Number
ptc/2001-03-04. http://www.omg.org/cgi-bin/doc7ptc/2001-03-04

5. M. Dmitriev; Design of jfluid: A profiling technology and tool based on dynamic bytecode
instrumentation. Technical report. Sun Microsystems, Nov. 2003.

6. E. Kiciman: Pinpoint: Status and future directions. 2003 www.stanford.edu/"emrek/pubs/
roc-retreat-2003-pinpoint.pdf

7. Pawel Klaczewski: Testability Issues of Multitier Applications (in polish). Master thesis,
Institute of Computer Science of Warsaw University of Technology, 2005.

8. Marcos K. Aguilerai, Jetfrey C. Mogul, Janet L. Wiener, Patrick Reynolds and Athicha
Muthitacharoen: Performance debugging for distributed systems of black boxes. In Proceedings
of SOSP, Bolton Landing, NY, Oct. 2003.

9. E. Cecchet and A. Chanda and S. Elnikety and J. Marguerite and W. Zwaenepoel: Performance
Comparison of Middleware Architectures for Generating Dynamic Web Content, 4th
ACM/MP/USENIX International Middleware Conference, Rio de Janeiro, Brazil, June, 2003.

www.manaraa.com

An Analysis of Use Case Based Testing Approaches
Based on a Defect Taxonomy

Timea Illes', Barbara Paech'

' University of Heidelberg, Institute of Computer Science
Im Neuenheimer Feld 326

Germany-69120 Heidelberg
{illes, paech} @informatik.uni-heidelberg.de

Abstract: Use cases are a well-established means for requirements elicitation
and specification. Recently, several approaches have argued to take use cases
also directly as the basis for testing. In this paper we analyze use case based
testing approaches on the basis of a defect taxonomy. For this purpose, we pro
pose a taxonomy classifying typical defects which need to be uncovered during
system testing. Then, we survey current approaches to derive test cases from
use cases and discuss their ability to reveal these defects.

1 Introduction

Since their original introduction in [15], use cases (UC) have gained an increasing
popularity. They are a well-established means for requirements elicitation and specifi
cation, modeling the behavior of a system from the user's point of view.

Recently, several approaches have been proposed which take UCs as input for test
case development. The need to employ documented requirements as a basis for testing
has already been recognized in the year 1979 [19]. A more recent survey insists on the
necessity of using UCs as a basis for system testing [28]. UC based testing claims to
offer a lot of advantages. One of these advantages is that UCs are widely used as in
herent part of most object oriented analysis and design methodologies. Furthermore,
the use of UCs as a basis for both, for software development as well as for testing,
provides a uniform notation and a high reusability of requirements engineering arti
facts. Additionally, the integration of testing activities into early development stages
is alleviated. Finally, the development of test cases in parallel to UCs enables an early
validation of the requirements.

But how well can these approaches support system testing? In order to answer this
question, this paper examines which typical defects can be revealed during system
testing and discusses the ability of current approaches to reveal the identified defect
classes. The contribution of this paper is three-fold. First, we propose a defect classi
fication for system level tests. Then, we evaluate current approaches for UC based
testing with respect to their ability to reveal these defect classes. Finally, we add a
testing perspective to requirements engineering (RE). The defect classes show how
testers think about requirements and systems and what kind of information they need.

Please use the foUowing format M'hen citing this chapter:

Hies, T., Paech, B., 2006, in IFIP International Federation for Information Processing, Volume 227, Sottware Engineering
Techniques: Design for Quahty, ed K. Sacha, (Boston: Springer), pp. 211-222.

www.manaraa.com

212 Timea Illes, Barbara Paech

Related work. In [12] four approaches addressing the derivation of test cases from
requirements are compared. Only two of them are based on UCs. Furthermore, the
comparison is very superficially based on criteria such as the use of standards or the
availability of a tool supporting the approach. In [2] an overview of the approaches to
test case generation during RE is given. In contrast to this paper, the authors do not
focus on UC based testing techniques and consequently they do not consider all ap
proaches discussed in this paper. Additionally the comparison of the approaches is ad-
hoc without a systematic definition of criteria.

Overview. The remainder of this paper is organized as follows. Section 2 starts
with a brief introduction to the basic concepts of UC based testing. Section 3 intro
duces the defect taxonomy. Section 4 gives an overview of current approaches for UC
based test case derivation and discusses how well they addi'ess the defect classes pro
posed in Section 3. Section 5 concludes the paper.

2 UC Based Testing - The Overall Approach

This section introduces some basic concepts. We explain the notions of UCs, of sys
tem testing and UC based testing. Additionally, we give an overview on UC based
testing approaches considered in this paper.

2.1 Terminology

In the context of this paper we defme UCs, based on the definition proposed in [22] as
follows: A UC is a sequence of steps executed cooperatively by the system (system
steps) and outside actors (actor steps) in order to yield an observable result to the ac-
tor(s), including alternatives and exceptions. Consequently, UC descriptions typically
contain information on tasks or goals (Which tasks/goals of the actor(s) should be ful
filled by the UC?j, actors (Who initiates/participates in the UC?), preconditions and
postconditions (Which conditions have to be fulfilled before respectively after the UC
execution?) as well as actor steps (actions to be performed by the actors, including
input data) and system steps (actions to be performed by the system, including output
data). Optionally, information on rules (describing complex functional or causal inter
relations) as well as on quality requirements (e.g. usabihty or performance) can be
added to the UC description.

According to the definition proposed in [13], system testing is concerned with the
process of testing an integrated system in order to verify that it meets the specified re
quirements. For this purpose a finite set of test cases has to be developed, in order to
execute the system under test (SUT) with different inputs. A test case contains a set of
input values, execution preconditions, expected results and execution post conditions.

UC based testing is an approach to system testing, where test cases are defined and
selected on the basis of the requirements specified in terms of UCs. Therein, UCs play
different roles:

During testing, actual behaviour is compared with the expected behaviour in order
to decide, whether a test was passed or not. The source to determine the expected be
haviour of the SUT is called test oracle. Consequently, the UC specification serves as

www.manaraa.com

An Analysis of Use Case Based Testing Approaches Based on a Defect Taxonomy 213

test oracle in UC based testing, i.e. the UC specification is the source to define the
expected output and post conditions as a result of the input and preconditions defined
in a certain test case. If the actual behaviour corresponds to the expected behaviour,
the SUT meets the specified UC. Since complete testing is impossible, a finite set of
test cases has to be selected according to some coverage criteria indicating which
parts of the SUT should be executed. Coverage criteria are determined according to a
coverage item. In the case of UC based testing, UCs serve as coverage items. A weak
coverage criterion is e.g. UC coverage, which requires at least one test case per UC. A
stronger coverage criterion is e.g. path coverage which requires at least one test case
per UC path.

2.2 Considered Approaches

Table 1 gives an overview on the approaches and the particular models into which
UCs are transformed.

Table 1. Overview of the approaches and corresponding models

Approach (ID, Name) Model Transformation
A Path Analysis [1] UC, no transfoiTnation
B Testing with UCs [24] State charts, Activity Diagrams
C Extended UCs [4] Tabular representation
D Requirements by Contracts [21] UC transition system (nodes; system

states, transitions: instantiated UCs)
E TOTEM [6] Activity Diagrams, Sequence Charts, regu

lar expressions
F SCENT [25] Annotated state charts, dependency charts
G Simulation and Test Model [29] Extended interaction overview charts, state

charts
H Purpose Driven Testing [3] Goal Graphs (different abstraction level)
I ASM based Testing [11] Abstract state machines

For our analysis we selected approaches according to the following criteria:

(a) The approaches are based on UC descriptions or UC diagrams
(b) For each of the following approach classes we selected representative approaches.

Model exploration approaches exploit the information contained in UCs as is.
Most approaches of this class are white papers. We selected the Path Analysis ap
proach (A in Table 1) because it was the only approach of this class mentioning the
GUI.

Model extension/transformation approaches extend the information contained in
UCs by test related information. Additionally, an infonnal or structured UC model is
transformed into a semi-formal, mostly graphical model. When appropriate, the re
sulting model is retransformed into a new model. On the basis of the resulting model,
test cases are (semi-) automatically derived. For this purpose the models are traversed
according to some coverage criteria, where a path usually corresponds to a test case.
The approaches B-H in Table 1 belong to this class. We selected the approaches so

www.manaraa.com

214 Timea Illes, Barbara Paech

that all target models (e.g. state charts or a proprietaiy model) are represented. Addi
tionally we included the approach B in Table 1 as it addresses inter-software defects.

Model formalization approaches take an informal or structured UC model as in
put and transform this into a foniial model. On the basis of this model, test cases can
be automatically generated according to specific coverage criteria defined for that
model. As a representative of this class we selected the ASM Based Testing approach
(I in Table 1).

3 Defect Taxonomy

We now identify typical defect classes which need to be uncovered during system
testing. We based our defect classification on taxonomies proposed in [5, 16]. In con
trast to these defect taxonomies, which address defect classes at different phases of
the development life cycle, e.g. defects in the requirements specification document,
we restricted our taxonomy to defects which can be detected during system testing.
Additionally, we refmed the resulting taxonomy by analyzing further defect classifi
cations like those proposed in [17, 18, 27] with respect to their applicability for sys
tem testing. In contrast to our taxonomy, these classifications have a particular focus
on e.g. defects in e-commerce applications [27] or taxonomies for security issues [17]
and [18]. Finally, we validated OIK taxonomy by investigating, to what extend defects
captured in bug reports for open source software can be classified according to our
taxonomy. For this purpose we investigated several bug reports stored in the bug
tracking system of the mozilla.org [7] database. The defects recorded in this database
refer to software such as the web browser Firefox [10], the Email Client Thunderbird
[26] and other mozilla.org projects [20]. Due to the comprehensiveness of the data
base, we only considered "blocker", "critical" and "major" defects. Additionally we
investigated defect lists of two open source CRM (Customer Relationship Manage
ment) projects [9, 23]. The result is a list of defect classes for system testing. Each de
fect class can be refined by subclasses. The defect classes are not orthogonal, i.e. a de
fect can be categorized into more than one defect class. Additionally, a defect can also
be associated to a combination of defect classes. In the following, we present a short
definition and corresponding examples of typical subclasses for each defect class.

Completeness defects subsume all defects related to an incomplete implementa
tion of the specified functionality. Typical defects in this class are missing functional
ity defects (the implementation of a specified or desired requirement is missing) and
undesired functionality (additional, undesired functionality has been implemented).
There are two typical defects which can occur in the presence of additional, undesired
functionality: prevention defects (if additional fimctionality prevents the execution of
the desired functionality) and overlapping defects (if additional fimctionality and de
sired fimctionality overlap).

Input/Output defects subsume all defects related to wrong input respectively to
wrong output data of the SUT. Typical input/output defects include boundary defects
(e.g. date < 21.02.2006 instead of date < 13.02.2006), defects concerning wrong size,
shape or format of the data or combination defects (i.e. defects which occur, when
certain input values respectively output values are combined).

www.manaraa.com

An Analysis of Use Case Based Testing Approaches Based on a Defect Taxonomy 215

Calculation defects subsume all defects resulting from wrong formula or algo
rithms in the SUT (e.g. defect in the search algorithm: The system looks for product
descriptions, containing all of the key words entered by the customer, instead of find
ing also products containing at least one of the entered keywords).

Data handling defects subsume all defects related to the lifecycle and the order of
operations performed on data. Typical data handling defects include duplicated data
(e.g. system fails when creating duplicated data) or dataflow defects (defects related
to the sequence of accessing a data object (e.g. data update before the data has been
created).

Control flow and sequencing defects subsume all defects related to the control
flow or the order and extent to which processing is done, as distinct from what is done
[5]. Typical control flow defects concern wrong sequencing of the actions perfonned
or iteration and loop defects, which subsume all defects related to the control flow of
iterations and loops.

Concurrency defects subsume all defects related to the concurrent execution of
parts or of multiple instances of the SUT. Typical defects contained in this class in
clude priority defects and race condition defects. Priority defects are related to the as
signment of a wrong priority (too high, too low, priority selected not allowed), e.g. a
phone call on a mobile phone does not pre-empt the execution of an arbitrary function
when a phone call has been received). Race condition defects are related to the com
petition of processes for a limited resource, e.g. for time, or for shared data.

GUI defects subsume all defects related to the user interface, which are not usabil
ity defects. Typical defects of this class are display defects (defects related to the dis
play and highlighting of the information on the screen, e.g. failure to clear or update
part of the screen or failure to clear highlighting) and navigation defects (e.g. missing
or disabled menu entries).

NFR (non-functional requirement) defects subsume all defects related to the
quality of the SUT. According to [14], defects concerning functionality, reliability,
usability, efficiency, maintainability and portability belong to this category.

Inter-Software defects subsume all defects concerning the interface of the SUT to
other software systems. Typical defects of this class are input/output defects (if there
is a syntactic or semantic misimderstanding between the interacting software sys
tems), concurrency defects (e.g. if the SUT and a COTS component compete for the
same data) or completeness defects (e.g. if functionality of the third party software is
missing).

Hardware defects subsume all defects concerning the interface of the SUT to the
hardware. Typical defects of this class are input/output defects (e.g. incorrect inter
pretation of returned status data).

4 Evaluation of the Approaches

UCs are intuitive, informal and thus easily readable for different stakeholders. Conse
quently, UCs are well suited in the context of requirements elicitation and specifica
tion. However, when UCs are used as a basis for test case derivation the perspective
changes. In this case, the stakeholders of the UC specification are testers, who aim to

www.manaraa.com

216 Timea Illes, Barbara Paech

find defects in the SUT. The aim of this paper is not the evaluation of the UC con
cepts itself, but the efficiency of UC based testing techniques.

Based on the defect taxonomy introduced in Section 3, we now discuss the defect
classes with respect to their ability to be revealed by UC derived test cases. Addition
ally, for each defect class typical solutions are presented. Table 3 summarizes the re
sult of our analysis. A „+" indicates that the corresponding defect class is well ad
dressed by an approach, a "(+)" indicates that the coiresponding defect class is
partially considered (e.g. parts of the possible defects in the defect class are ad
dressed). A "-" indicates that the approach does not consider the coaesponding defect
class at all.

In order to assiire comparability of the approaches, we assume a correct UC speci
fication and evaluate the efficiency of the techniques with respect to a given correct
specification. All techniques assume a correct requirements specification because the
test case set derived is as good as the UCs tliemselves. Some approaches give guid
ance for the specification and validation of use cases. But this aspect is not part of our
evaluation. Furthermore, to assure an efficient evaluation, we focus on defects which
can be associated with a single defect class and do not consider defects which result
by all possible combinations of different defect classes.

4.2 Completeness Defects

In general missing UC implementation is revealed easily on the basis of a UC specifi
cation. Most approaches will uncover a missing UC knplementation, since they iterate
over all UCs and perform some analysis per UC, e.g. determine all paths within a UC
or develop a new model e.g. a state chart representation/?er UC. Consequently, there
is at least one test case per UC which would detect the missing implementation of a
UC. Whether missing parts of an UC can be uncovered, depends on which coverage
criteria the corresponding approach defines, e.g. path coverage will easily uncover a
missing case within a UC. Coverage criteria will be discussed along with control flow
and sequencing defects. As the approaches [21] and [3] focus on the interaction be
tween UCs, they are not well suited to uncover missing parts within a UC.

4.3 Input / Output Defects, Calculation and Data Handling Defects

The detection of input/output defects, calculation defects as well as data handhng de
fects depends on the accuracy with which the respective details have been docu
mented. Due to the fact that UCs are typically phrased in natural language, they are
imprecise. Therefore, test cases derived fi^om UCs will hardly reveal input/output de
fects, calculation defects as well as data handling defects.

Input/Output Defects. In [4] the concept of extended UCs is introduced. Extended
UCs express the relationship between system state (precondition of aUC), a combina
tion of inputs and the expected results in terms of a decision table. For each combina
tion of mputs and system state which results in distinct classes of SUT behaviour a
new relation in terms of a new row in the decision table is defined. Then, test cases
are derived using combinatorial strategies. Following this approach, input/output de-

www.manaraa.com

An Analysis of Use Case Based Testing Approaches Based on a Defect Taxonomy 217

fects can easily be uncovered. A light weight approach is the annotation of UCs or the
models derived on the basis of UCs with test related data including input values or
possible ranges for the input or output data. This is the case in [25] and [3].

Calculation Defects. Calculation defects are not addressed by any particular ap
proach especially. However, the approach proposed in [4] is suited best for this pur
pose. The tabular representation, relating a combination of inputs and system states to
outputs can easily be adapted to the creation of test cases, which test e.g. a formula
specified within a UC with different input combinations.

Data Handling Defects. In [6] the life cycle of a „business object" and related de
fects are addressed by representing the life-cycle of these objects in terms of activity
diagrams, which relate UCs to each other. The UCs are grouped into swimlanes,
where each swimlane represents the life cycle of a business object from its creation
until its deletion. UCs grouped into the same swimlane manipulate (read, write) the
corresponding object. Valid sequences of UCs are generated by traversing the activity
diagram. A path in the activity diagram represents a test case, and thus a possible life-
cycle of a business object. In [21] pre and post conditions of a UC are expressed in
terms of contracts on the inputs respectively on outputs of a UC e.g. an item has to be
created so that the UC delete item can be executed. Thus, sequences in the life cycle
of business objects can be created by concatenating UCs so that the post condition of
one UC represents the precondition of the next UC. However, both approaches con
sider only valid paths. Negative test cases, e.g. which test unwanted behaviour are not
created.

4.4 Control Flow and Sequencing Defects

Sequences of interaction between user and system as well as alternatives and excep
tions within a UC can easily be expressed. Hence, control flow as well as sequencing
defects in the implementation of that particular UC can easily be detected. But since
UCs comprise self-contained coherent units of functionality, they are not suited to ex
press the interplay between distinct UCs. Consequently, test cases which verify the
correct implementation of the interaction between UCs are hard to be derived from
UC specifications.

Some approaches [1] and [8] require structural coverage of UCs by test cases, e.g.
path coverage. Thus, each path in a UC is executed by at least one test case. Conse
quently, these approaches will likely reveal control flow defects within the implemen
tation of a UC. In [1] all paths of a UC are required to be uncovered by a test case. In
[8] test cases are derived which exercise all combinations of executing and non-
executing an « e x t e n d s » relationship. Most approaches transform the UC model
into another, more formal model e.g. a state chart or a sequence diagram representa
tion and require coverage of the new model. This is the case in [24, 6, 25, 29 and 11].
Usually the models are then traversed according to coverage criteria of the new
model. As the transformation into a new model is not automatic, there is a risk not to
consider all infomiation defined in a UC, and thus, not to detect all defects which
would be detected based on the original UC specification.

Control flow defects in the implementation of the interaction between UCs are es
pecially addressed in [3, 6, 21, 24, 25 and 29]. In [3] the interaction between UCs re-

www.manaraa.com

218 Timea Illes, Barbara Paech

alizing a user goal is addressed. In [6] valid sequences of UCs are expressed in terms
of activity diagrams. Test cases are derived by traversing all valid sequences. In [21]
contracts on the execution of a UC are defined by expressing pre and post conditions
of a UC. On the basis of these contracts, a transition model of valid UC sequences can
be defined by concatenating post conditions of a UC with the precondition of another
UC. Test cases are generated firom the transition model according to given coverage
criteria. In [24] state models derived from single UCs are merged by "composition".
Test cases are then derived by covering all valid state combinations in the "com
posed" state model. In [25] the interaction between UCs is expressed in a new dia
gram type, the so called "dependency chart". Dependency charts can express depend
encies between scenarios, e.g. sequential dependencies, alternatives or iterations. The
authors use the term "scenario" equivalent to the term "use case". Test cases are de
rived fi-om dependency charts mainly by trying to break the constraints defined. The
authors give advice on how to break these constraints. In [29] sequential dependencies
between UCs are identified and represented in terms of an UML interaction overview
diagram. This diagram is then transformed into a state chart model which is traversed
in order to derive test cases for each path in the state chart. No approach, except the
one introduced in [25], considers invalid paths and the systematic derivation of test
cases for trying to execute invahd paths.

Table 2 summarizes the evaluation of the approaches according to their efficiency
to detect control flow defects within the implementation of a UC and respectively in
the implementation of the interaction between UCs. Approaches which consider both
defect subclasses are highlighted in light grey.

Table 2. UC based testing approaches and control flow defects

Control flow defects within
the implementation of a UC
Control flow defects in the
implementation of the inter
action between UCs

1
1

+

H f7

if
-

+

2
o
p
•a
1
1

=

-
1

i

1
f-' So

2 »

+

•a

CD ::?

%^
<;.s

+

a s}
s ^
o '.

1

- 1
1

•' 1

5 l i s
J
!

1

i ;
•

4.5 Concurrency Defects

Expressing constraints on the parallel execution is not supported by UCs. Thus, UC
derived test cases will hardly uncover concurrency defects.

Concurrency defects are addressed in [29] by defining dependencies between UCs
and documenting these dependencies in terms of UML interaction overview diagrams.
The dependencies concerning constraints on the parallel execution cover: parallel
execution (when two or more UCs can be executed in parallel), pre
emption/suspension (when one UC pre-empts the execution of another UC having a
higher priority), exclusion (when a UC can not be executed during the execution of

www.manaraa.com

An Analysis of Use Case Based Testing Approaches Based on a Defect Taxonomy 219

another UC) and multi-instantiation (when multiple instances of a UC may be exe
cuted at once). Exclusion and suspension are not part of UML 2.0 interaction over
view diagrams. Thus, two additional stereotypes have been added to denote the corre
sponding relationships. The approach also contains a methodology to transfomi these
diagrams into state machines which are traversed and covered in order to obtain test
cases. Concurrency is also addressed in [25]. Dependency charts can express con
straints on the parallel execution of scenarios. Thus, enforced, prohibited as well as an
accidental parallelism can be expressed in terms of relationships between scenarios.
Furthermore, constraints on the starting time (scenarios have to start/end at the same
time or scenarios have to start one after the other with a given time interval between
them) as well as data/resource dependencies can be included. Test cases for each
identified dependency have to be developed. The authors propose to focus on "un
wanted" behaviour by defining test cases which try to break dependency constraints.
In [24] the necessity of modelling parallelism is stated, but how this should be ex
pressed and how corresponding test cases should be derived is not explained. In [6] it
is possible to express that the executions of two UCs are independent of each other.
But, there is no advice on how to derive test cases which address parallelism.

4.6 GUI &NFR Defects

UCs specify the functional requirements for a system, i.e. they indicate "what" should
be realized by the system, in contrast to non-&nctional requirements, which describe
"how well" a requirement should be realized. The latter can not be expressed well in
terms of UCs. Furthermore, UCs abstract fi:om a specific user interface, they specify
e.g. that an actor initiates a particular function, but they do not define whether this ac
tion occurs by clicking on a hyperlink of a web interface or by selecting a menu item
from a windows-based system. Consequently, UCs are not well suited to derive test
cases for this class.

GUI defects are considered solely in [1] and [25]. In these approaches, GUI-related
information can be annotated to test cases [1] or to intemiediate models derived from
UCs [25]. The authors do not illustrate how this information can be systematically
used to develop (flirther) test cases.

Non-functional defects, especially performance defects are addressed in [25] only.
According to this, the semi-formal models developed on the basis of scenarios are an
notated with non-fimctional requirements. When test cases are derived by covering
the state chart, these requirements have to be considered.

4.7 Inter Software Defects

UCs abstract from the internal realization of the functionality, more precisely they de
scribe the functionality without specifying, whether it will be realized by the SUT or
by a third party component. Accordingly, the defects detected by UC derived test
cases are mostly independent of the realizing (sub)system. A missing case within the
implementation of a UC will e.g. be detected by a test case derived from this UC, in-

www.manaraa.com

220 Timea Illes, Barbara Paech

dependent of the realizing (sub)system. There are, however particular cases, which
have to be considered.

The first case concerns undesired functionality of a third party system. In the case
of COTS-software, which is intended to be used in different contexts, the functional
ity provided is often much more comprehensive than the functionality needed in the
context of the SUT. Consequently, prevention defects (e.g. settings in a web browser
prevent the execution of parts of a web based application written in JavaScript) as
well as overlapping defects (e.g. when the "back" functionality in a web browser and
the "back" functionality in the web application interleave) are very likely to occur.
The second particular case concerns known defects in third party software. These de
fects represent a special kind of control flow defects, namely exception handling de
fects, where the SUT has to deal with exceptions of third party software.

As the architectural decisions, as well as decisions concerning which components
will be developed and which will be bought, occur at a later development stage as the
development of the UCs, the information on additional functionality is not contained
in UCs. Therefore, UC derived test cases will hardly uncover the defects mentioned
before.

Inter software defects are addressed in [24] and in [25] in the requirements specifi
cation phase, where guidance is given on how to identify the interface of the SUT.
According to this, all hardware interfaces as well as software interfaces to the SUT
are identified. These interfaces are considered (and covered) duiing the system test. In
[29] concurrency defects mainly in the context of distributed components of a soft
ware system are addressed. Nevertheless, none of these approaches deals with over
lapping functionality or with known defects in the third party software.

Table 3. UC based testing approaches and addressed defect classes

Completeness
Input / Output
Calculation
Data Handling
Control flow/ Sequencing
Concurrency
GUI
NFR
Inter Software
Hardware

f
1
+

-
-
-
f+)

(+)

-
-

M

.g
H
a
o

Q
w
O

(+)
(+)

-
f+)

-

-
-

2

S

+
+

(+)
-
-

-

-
-

+

.
-
(+)
+

-

-
-

W
O
P
•a
'%

en

I d

1/5

+

-
-
-
(+)

-

-
-

a
•a

CO

H
•T3
U
CO

cd

pa
S
< +

-
-
-
f+)

-

-
-

1
g
o 1 i
i
1
oi (+)
-
-
(+)
(+)

-

-
-

5^

s
1
1
+

-
-
-
+

-
-
-
(+)
(+)

+

(+)

-
+
+

f+)
f+)
(+)
(+)

5^
Ci

1
o

:s
to
(U
H •g a o

1
en
+

-
-
-
+
+

-
-
(+)
-

www.manaraa.com

An Analysis of Use Case Based Testing Approaches Based on a Defect Taxonomy 221

4.8 Hardware Defects

UCs not only abstract from the realization, but also from the underlying hardware and
external devices. Indeed, most defects at the interface of the SUT occur in the hard
ware. But as stated in [16], a software defect will also occur, if the software system
does not recognise and treat a defect in the hardware. Hence, test cases have to be de-
fmed, which address defects in the software concerning the exception handling of
hardware defects. Since UCs do not contain information on hardware, UC derived test
cases are not well suited to reveal this type of defects.

Similar to software defects, hardware defects are addressed in [24] in the require
ments specification phase. Hardware interfaces to the SUT are identified and docu
mented. These interfaces can be considered during system testing. In [25] dependency
charts, an annotation can be associated to a causal dependency concerning constraints
on hardware, e.g. a printer has to be connected before a particular scenario can be
executed (e.g. printing a document).

5 Conclusion and Future Work

In this paper we identified defect classes and discussed their ability to be uncovered
by UC based testing approaches. Control flow and completeness defects are addressed
by almost all approaches. No approach proposes a methodology to enrich UCs with
GUI and NFR related information and to systematically derive test cases for testing
the GUI and non-fonctional requirements. SCENT [25] is the most comprehensive
approach, addressing more defect classes than all other approaches which have been
analysed. It is a lightweight approach for UC based testing which addresses most of
the defect classes by annotating UC derived models with test related information. In
order to define a middleweight and more thorough approach for UC based testing,
some issues concerning the integration of the GUI and of NFRs must be considered.
Our future work will address the definition of an integrated model for RE and test de
velopment which allows the detection of NFR and GUI defects. Furthermore, we aim
at designing a thorough evaluation of the approaches according to a strong bench
mark.

References

1. Ahlowalia, N.: Testing from Use Cases Using Path Analysis Technique, International Con
ference On Software Testing Analysis & Review, (2002)

2. Allmann, C , Denger, C , Olsson, T.: Analysis of Requirements-based Test Case Creation
Techniques, lESE-Report No. 046.05/E, (2005), http://www.iese.fraunhofer.de/pdf_files/
iese-046_05 .pdf, last visited July 2006

3. Alspaugh, T.A., Richardson, D.J., and Standish, T.A.; Scenarios, State Machines and Pur
pose Driven Testing, 4th International Workshop on Scenarios and State Machines: Mod
els, Algorithms and Tools (SCESM'05), St. Louis, USA, (2005)

3. Binder, R.: Testing Object-Oriented systems, Addison-Wesley, (2000)

www.manaraa.com

222 Timea Illes, Barbara Paech

4. Beizer, B.: Bug Taxonomy and Statistics, Appendix, Software Testing Techniques, Second
Edition, Van Nostrand Reinhold, New York, (1990)

5. Briand, L., and Labiche, Y.: A UML-based Approach to System Testing, Technical Report,
Carleton University, (2002)

6. Bugzilla, https://bugzilla.mDzilla.org/, last visited July 2006.
7. Camiello, A., Jino, M., and Lordello, M.: Structural Testing with Use Cases, WER04 -

Workshop em Engenharia de Requisitos, Tandil, Argentina, (2004)
8. Compiere, http://www.compiere.org/, last visited July 2006
9. Firefox, http://www.firefox.com/, last visited July 2006
10. Grieskamp, W., Lepper, M., Schulte, W., Tillmann. N.: Testable Use Cases in the Abstract

State Machine Language, Second Asia-Pacific Conference on Quality Software
(APAQS'Ol), (2001)

11. Gutierrez, J.J., Escalona, M.J., Mejias, M., Torres, J., Alvarez, J.A.: Comparative Analysis
of Methodological Proposes to Systematic Generation of System Test Cases from System
Requirements, Proceedings of the 3rd Intemational Workshop on System Testing and Vali
dation, (SV'2004), ISBN: 3-8167-6677, Paris, France, (2004), pp. 151-160

12. Intemational Software Testing Qualifications Board, ISTQB Standard Glossary of Terms
used in Software Testing VI. 1, (2005)

13. International Standard ISO/IEC 9126, Information technology - Software Product Evalua
tion - Quality Characteristics and Guidelines for Their Use, Intemational Organization for
Standardization, Intemational Electrotechnical Commission, Geneva, (1991)

14. Jacobson, I., Christerson, M., Jonsson, P., and Oevergaard, G.: Object-Oriented Software
Engineering: A Use Case Driven Approach, Addison Wesley, (1992)

IS.Kaner, C , Falk, J., and Nguyen, H. Q.: Testing Computer Software, 2nd Ed., Wiley, New
York, (1999)

16. Krsul, I : Software Vulnerability Analysis, Department of Computer Sciences, Purdue Uni
versity, Ph.D. Thesis, COAST TR 98-09; (1998)

17. Lough M.L.: A Taxonomy of Computer Attacks with Applications to Wireless, PhD Thesis,
Virginia Polytechnic Institute, (2001)

18. Meyers, G.J., The Art of Software Testing, John Wiley & Sons, New York, (1979)
19. Mozilla.org, http://www.mozilla.org/, last visited July 2006
20.Nebut, C , Fleurey, F., Le Traon, Y., and Jezequel, J.-M.: Requirements by conti-acts allow

automated system testing, Proc. of the 14th. IEEE Intemational Symposium on Software
Reliability Engineering (ISSRE'03), (2003)

21. Object Management Group. UML Superstnrcture Specification, v.2.0, (2005)
22. opentaps, http://www.opentaps.org/, last visited July 2006
23. Rupp, C , and Queins, S.: Vom Use-Case zum Test-Case, OBIEKTspektram, vol. 4, (2003)
24. Ryser, J., and Glinz, M.: SCENT: A Method Employing Scenarios to Systematically Derive

Test Cases for System Test, Technical Report, University of Zurich, (2000/03)
25. Thunderbird, http://www.mozilla.com/thunderbird/, last visited July 2006
26. Vijayaraghavan, G.; A Taxonomy of E-Commerce Risks and Failures. (Master's Thesis)

Department of Computer Sciences, Florida Institute of Technology, Melbourne, FL, May
2002

27. Weidenhaupt, K., Pohl, K., Jarke, M., and Haumer, P.: Scenaiio Usage in System Develop
ment; A Report on Current Practice. IEEE Software, (1998)

28. Whittle, J., Chaki-aborty, J., and Krueger, I.: Generating Simulation and Test Models from
Scenarios, 3rd World Congress for Software Quality, (2005)

www.manaraa.com

Minimizing Test Execution Time During Test Generation

Tilo Mticke and Michaela Huhn

Technical University of Braunschweig, 38106 Braunschweig, Germany
{tmuccke.huhn) @ips.cs.tu-bs.de,

WWW home page: http;//www.cs.ta-bs.de/ips

Abstract. In the area of model based testing, major improvements have been
made in the generation of conformance tests using a model checker. Unfortunately,
the execution of the generated test suites tend to be rather time-consuming. In [1]
we presented a method to generate the test suites with the shortest execution time
providing the required coverage, but this method can only be applied to small
models due to memory-consumption. Here we show how to generate test suites
for a number of different test quality criteria like coverage criteria, UIOs, mutant
testing. Moreover, we present heuristics to significantly reduce test execution time
that are as efficient as a naive testsuite generation. Our optimization combines
min-set-cover-algorithms and search strategies, which we use to enlengthen
generated test cases by promising additional coverages. We compare several
heuristics and present a case study where we could achieve a reduction of the
test execution time to less than 10%.

1 Introduction

In the last decade, models have been discovered as an invaluable source for deriving
test cases. Many authors proposed model checking [2-4] or other search strategies
[5] to automatically generate test sequences from behavioral (semi-)formal models.
The success of model based testing has its reasons in the wide acceptance of model
based development in practice, in particular in the embedded domain where substantial
verification and testing of systems is obligatory.

We present an approach to model based test generation that uniformly handles
a number of well-established test quality criteria like test purposes [5], coverage
criteria [4], and mutation testing [6] and applies them on behavioural models. Our key
technology for test case generation is model checking on state based systems. In a
preparatory step, test quality criteria are split into subgoals that can be achieved by a
test case and the models are instrumented by adding auxiUary variables and test drivers
to direct the search for test cases to the subgoals. Using this procedure systematically,
large testsuites for involved test quality criteria can be generated automatically.

However, many generated testsuites expose long test execution times which is a
Umiting factor in several real-time domains: For instance, in railway interlockings, traffic
or process control systems some actions need relevant time for execution. We address
this problem by combining heuristic search algorithms with min-set-cover algorithms
for minimizing the test execution time of the testsuites but preserving the test quality.

A second problem of automated test generation is the fault recognition rate. As
recently observed by Heimdahl [7], structural test quality criteria tend to produce

Please use the following format when citing this chapter:

Miicke, T., Huhn, M., 2006, in IFIP International Federation for Information Processing, Volume 227, Software Engineer
ing Techniques: Design for Quality, ed. K. Sacha, (Boston: Springer), pp. 223-235.

www.manaraa.com

224 Tilo Miicke, Michaela Huhn

testsuites that just satisfy the criteria instead of verifying the correct behavior. We cope
with this weakness by using strong quality criteria [8], by enlengthening the test cases
with UIOs (see section 2.6), and by extending test cases gathering additional coverage
(see section 3). Consequently, our approach has the potential to generate test cases with
a higher fault recognition rate.

system
model
(UML

statecharts)

test quality
criterion

c
o

a
F
H
ta
c
o
o
fc

f ^

c
.2
«

J

/

formal
system
model

(UPPAALtlmetl
automata)

\ temporal
logic formula

^
^ c
1
a)
.c
o
o
^ o
E

E
E •*-•
• | ra
a
.c

a ffl
a
u

trace

test case/
testsuite

(UML
sequence
diagram)

Fig. 1. Automated model based test case generation

Figure 1 summarizes the procedure for test case generation. Initially, the instrumen
tation of the model has to be adapted according to the selected test quality criterion.
The different instrumentations are described in Section 2. The details on the translation
from UML statecharts [9] to the input language of the UPPAAL model checker [10]
and back can be found in [1]. Section 3 is concerned with the combination of search
heuristics for test case generation and min-set-cover algorithms to optimize testsuites
with respect to test execution time. The results of a case study are reported in Section
4 and we conclude in Section 5.

2 Test Case Generation

In this section we describe the instrumentation of models for test case generation via
model checking for three different test quality criteria:
1. A test purpose is given by a test expert. It consists of a desired property or a critical

operation sequence. Test cases checking the property or executing the sequence are
generated.

2. Coverage criteria are definitions of model element type dependent, structural
properties which have to take place during test case execution. E.g. state coverage
demands each state to be visited at least once.

3. Mutant testing demands that every mutated model has to be uncovered as erroneous
by the testsuite, unless it behaves equivalent to the original model. The mutants are
generated automatically by so called mutation operators. E.g. arithmetic operator
replacement (AOR) replaces each occurrence of an arithmetic operator by any other
arithmetic operator.

We decompose each test quality criterion into subgoals which are to be achieved and
call them partial coverages. Partial coverages are encoded as predicates that shall be
satisfied on some execution like "state s has to be reached". For our purposes, the
system model consists of a family of UML statecharts [9] modeling the behavior of the
system components. UML statecharts extend final state machines by the concepts of

www.manaraa.com

Minimizing Test Execution Time During Test Generation 225

hierarchy, concurrency and communication via events. Transitions can be labeled with
events, guards and actions. Additionally, we use a time event after(t) with the obvious
meaning. There exist a number of formal semantics for statechart dialects and we will
use the approach from [11,12] to transform statecharts into the input language of the
UPPAAL model checker [10] and translate the output traces of the model checker back
into sequence diagrams. UPPAAL supports the verication of real-time constraints, a
feature we use for the generation of time annotated test cases. The real-time annotations
within the models result from measuring and approximating the execution times of
actions from previous versions of the components. Test purposes are given in terms of
predicates or UML sequence diagrams for scenarios. To illustrate test case generation for
the quality criteria, we use a simple running example: The control of a dimmer switch.

2.1 Example: Dimmer Switch

- off[b==0] — —

after(ATlME)[b==0]

^on/b:=oonf ^ i ^

off[b>0]/b:=b-1, conf:=b>0?b:1

Adjustable I on[b<BMAX]/b;=b+1, conf:=b

$ / Off

y «^- _y

after{ATiME)[b>0]

on[b<BMAX]/b:=b<BMAX?b+1 ;BMAX, conf:=b

off/b:=0 (Inadjustable j

Fig. 2. Statechart of the dimmer switch

The dimmer switch is controlled by two buttons (events): on and off. The brightness
b of the connected lamp is the only observable output of the system and can be adjusted
within the values 0 (light off) and BMAX. When the on button is pushed, the lamp
lights with the brightness b that is memorized (conf) from the previous use. After
turning the dimmer on, the brightness can be modified smoothly by pressing the buttons
on and off. If for the time ATIME no button is pressed, the brightness will become
inadjustable. Pushing the off button turns the lamp off immediately. By pressing the on
button, the lamp returns into adjustable mode. The statechart model of the dimmer
switch is shown in Fig. 2.

2.2 Test Driver
For test case generation, a test driver has to be added which

feeds the system under test wi th all possible inputs. This test
driver has to be implemented non deterministically (see figure
3). Technically, the test driver is put in parallel to the statecharts
model ing the system which leads to a product construction at
the level of model checking. Fortunately, the test driver consists
of only one state.

/dimmer.on

J i
- ^ Ready

Wimmer.off

Fig. 3 : Test driver

www.manaraa.com

226 Tilo Milcke, Michaela Huhn

2.3 Test Purpose: Property

First we consider properties that shall be checked by tests. An example property for
this model is:

1
temporal logic formula
E<>{b> 0)

meaning
The lamp can be turned on.

In case a property can be directly expressed as a path quantified state predicate the
model instrumentation can be omitted. The only thing to do is to add a query at the
level of the model checker, i.e., E <> p (on some trace p happens) in UPPAAL
syntax. For a property E <> pihe model checker returns a trace if it is satisflable.

2.4 Test Purpose: Interaction Sequence

Often a test purpose can be naturally described as a sequence of operations or
interactions. Thus, sequence diagrams are a widely used representation in testing which
we use as well. Figure 4 shows a sequence diagram where on is pressed, it is waited
ATIME and then off is pressed, demanding that the brightness is set to 0. Afterwards
conf is set to 2 and on is pressed, so that b will be 2.

To generate a test case including this sequence, the test driver is modified. It
consists now of it's nondeterministic part which is needed to reach a state where the
sequence can be executed and a simple representation of the activities in the sequence
diagram from the point of view of the test driver, see Figure 4 (right). To generate a
test case containing this sequence we ask the model checker for a path reaching the
partial coverage: E <> testdriver.Finished.

Possible actions of the test driver are (1) sending and (2) receiving events, (3)
changing and (4) monitoring global variables, and (5) evaluating time constraints. How
these actions are translated from sequence diagrams in test drivers is formally described
in [11]. Time constraints are realized during translation to UPPAAL timed automata.

To generate more than one trace per sequence diagram, one can vary the state
at which the execution of the sequence starts which will lead to additional partial
coverages representing different settings where the scenario is executed.

2.5 Coverage Criteria

A model checker can as well be used to generate test cases for coverage criteria. In [1]
it is shown, how models are instrumented and properties are generated to achieve
state coverage, transition coverage, modified condition/decision coverage, boundary
coverage and dataflow coverage. The instrumentation adds new coverage variables to
the system, which are set, whenever a partial coverage is achieved. E.g. to achieve
transition coverage each transition is once supplemented with a statement setting the
coverage variable to true. Thus with a query E <> [coverageVar] the appropriate
partial coverage can be achieved. Other coverage criteria require splitting of transitions
(modified condition/decision coverage) or adding auxiUary variables (dataflow coverage).
The new coverage criterion boundary coverage is now used as an example to show an
instrumented version of Fig. 2.

www.manaraa.com

Minimizing Test Execution Time During Test Generation 221

{a.receive-b.reGeive^ATIME}

{b==0}

{oonf:=2)

(b==2)

y^
I

/dimmer.on Ready /dimmer.off

/dimmer.on

|aftef(ATIME)/dlnimer.off|

|[dimmer.b=-0)|

/ditiimer.cQnf;=2

L

/dimmer.on

[b=-=2]

Finished

Fig. 4. Statechart of a modified test driver for the sequence diagram

Boundary Coverage demands that for each guard containing a relational operator a test
case is generated for which the operands are as close as possible to the boundary. To
achieve this criterion, the structure of the statechart is changed by splitting transitions.
Each transition with a relational operator in its guard is split in two transitions, one of
which fires for the closest operands possible only and is insti-umented by a coverage
variable and another one which conserves the behavior by firing in all other possibilities.
Figure 5 shows, how the Dimmer Switch is instrumented to enable the model checker
to generate test cases using the testdriver from Fig. 3 and the queries:
E <> 5 1 - = true, E <> B2 = = true, and E <> B3 = = true.

2.6 Unique Input Output Sequences

Recent results by Heimdahl [7] indicate that a testsuite generated for structural coverage
criteria like state or transition coverage may be weak w.r.t. its fault detection ability.
But fault detection is the overall aim of testing.

www.manaraa.com

228 Tilo Milcke, Michaela Huhn

offtb>0+1]/b:=b-1, conf:=b>0?b;1
I I

offlb==0+1]/b:=b-1, conf;=b>0?b:1, B1:=true

M " •
offlb==0]

f
after{ATIME)[b==0]-

tJL
% ^ Off

on/b;=conf-

Adjustable

onlb<BMAX-1]/b:=b+1, oonf:=b

K "
^-

-^K
on[b==BMAX-1]/b:=b+1, oonf:=b, B2:=true

off/b:=0-

1 V̂ f
after(ATIME)[b>0]

on[b==BMAX-1l/b~b<BMAX7b+1:BMAX, conf;=b, B3:=truB

y I on[b<BMAX-1]/b:=b<BMAX?b+1:BMAX, oont=fa

Inadjustable

Fig. 5. Statechart of the Dimmer Switch instnimented for boundary coverage

Let us consider a generation procedure for a testsuite satisfying transition coverage.
It will generate test cases in which the last step is the execution of the desired transition.
Thus, it is not tested if the correct target state of the transition is actually reached.
To overcome this kind of problems, we enlengthen the test cases by so called UIOs
(Unique Input Output sequence). These UIOs consist of a sequence which can only be
executed starting at the specific state. From all other states, provided they are not trace
equivalent, outputs of the system will differ from the outputs described in the UIO.

We generate UIOs using model checking in a variant of [13] by putting several
systems with partly modified initial states in parallel. The test driver is modified, so
that all systems are triggered with the same inputs. A comparator compares the outputs
of the systems. As soon as a system has produced different output compared to all
other systems, a UIO for the initial state of this system is found.

2.7 Mutant Testing

Mutant testing requires, that each mutation of the original model is either equivalent to
the original model or found as erroneous by the test suite. The mutants are generated
by mutation operators.

The classical mutation operators [6] can be applied to code only. Thus, in the case
of statecharts, they can be applied to guards and actions. Common mutation operators
are: (1) LCR, AOR, ROR which replace each occurrence of a logical, arithmetical, or
relational operator by any other operator of the same type, (2) UIO which negates,
increments and decrements each arithmetic expression, (3) AAR, ACR, ASR, ... replace
each occurrence of a variable, constant or array by each compatible variable, constant
or array, (4) CRP, DSA sUghtly change constant values, (5) SDL deletes each statement,
and many more.

On the model-layer, these mutation operators have to be supplemented by mutation
operators working with the structure of the automata [14]. Some of these operators are
already handled by mutating guards and actions. Examples for other operators are; (1)
state rnissing, (2) transition missing, (3) replace origin state of a transition, (4) replace

www.manaraa.com

Minimizing Test Execution Time During Test Generation 229

target state of a transition, (5) replace triggering event, (6) replace triggered event, and
(7) replace event recipient.

To generate mutant killing test cases, the original model has to be executed versus a
mutated program. They both have to be triggered by tlie same inputs. A mutant is
found as erroneous, if the outputs differ. Thus, the same technique we used for UIO
generation is applied for generating mutant killing test cases.

Detecting unsatisfiable coverages is done by using the query A[]c == false for a
partial coverage c. If the subgoal cannot be achieved, it is is ehminated.

3 Strategies to Generate Time Optimized Testsuites

After instrumenting the model according to a test quality criterion, the statecharts
modeling the system ai-e transformed into a semantically equivalent family of timed
automata that serves as formal system model for UPPAAL. Details on the construction,
e.g. syntactic restrictions on die UML model elements, the translation of timing
constructs, the handhng of event queues and UML run-to-completion semantics, can be
found in [11].

In [1] we investigate a technique to generate the time optimal testsuite. We achieved
a significant reduction in test execution time, but the technique suffers from high
memory consumption, i.e. it is restricted to small models.

Alternatively, we consider heuristics to efficiently generate testsuites with optimized
but not necessarily minimal execution time. We generate an optimized testsuite in two
steps:
1. We generate a test case for each partial coverage we are interested in, thereby

following the work of Hong et.al. [4]. These test cases build a testsuite for a given
test quality criterion as each required partial coverage is achieved at least once.
Moreover, some partial coverages may be satisfied by more than one test case'. To
increase the basis for optimization we enlengthen the test cases by adding a path
starting from its final state and leading to a state where some additional coverage is
satisfied. We consider several search heuristics to generate a testsuite of promising
long test cases. The amount of redundancy with respect to the achieved coverages
is controlled by a parameter of the search.

2. We use min-set-cover-algorithms [15,16] to optimize test execution time of a
testsuite but retain the required partial coverages. Since the testsuite has been
enlarged, a min-set-cover-algorithm works on a broader basis from which it
eliminates test cases that are redundant w.r.t. the achieved coverages. Again we
consider different heuristics to improve test execution time.

3.1 Building a Redundant Testsuite

For a succinct description of the heuristic search we use pseudo code. The basic
function is called tcGenerate and generates a single test case as follows: The model is
instrumented and transformed to the model checker input language, then the model

A test case for the coverage ci may reach other coverages on the way.

www.manaraa.com

230 Tilo MUcke, Michaela Huhn

checker is employed for searching a trace and finally the resulting trace is retranslated
into a sequence that can be executed on the system model. The concepts needed to
realize tcGenerate have been described in Section 2:

tcGenerate : Models x {Traces U {s}) x PC -^ Traces U {e}

tcGenerate takes a statechart model m G Models, an initial segment of a test case
t e Traces U {e}^ and a partial coverage pc from the set of interesting partial coverages
PC. It returns a test case tc that extends t, i.e. tc = t • w for some suffix u, and satisfies
the given partial pc, if possible. Otherwise, it returns e. With each generated test case
tc we store two attributes; texec{tc), the test case execution time, and suhPC{tc), the
subset of PC that is achieved when executing tc

Now we consider three search strategies that use tcGenerate to generate testsuites
for a given model and a set of partial coverages PC:

search : Model x p{PartGov) —> p{Traces)

The naive search strategy simply generates one test case for each required partial
coverage pc e PC by successively calling tcGenerate. Thus the size of the testsuite is
0{\PC\).

The depth 2 search aims to enlengthen a test case by a suffix that achieves an
additional partial coverage. The initial parts are generated by the naive search strategy
and then an extension for each partial coverage is searched:
function depth2Search(model, PC)

testsuite—naiveSearch(model, PC); extension=%;
foreach testcase e testsuite do

foreach pc € PC do
extendedTestcase—tcGenerate(model, testcase, pc);
if (extendedTestcase^e) then extension^extension U {extendedTestcasej;

od;
od;
return testsuite U extension;
The number of generated test cases is in 0{\PC\^).

Heuristic Search enlengthens only the best test cases for a partial coverage which has
been achieved rarely so far. Therefore we need two ranking functions. getBestTestcase^
returns the test case with the maximal value for \PC{tc)\/(tesoedtc) + t,reset) which has
not been enlengthened in all possible ways. The function getWorstPartialCoverage
gives us the partial coverage which has been achieved least often in the testsuite and in
particular not in the chosen test case. The parameter amount controls how many test
cases are generated. In our experiments we used 10 • \PC\ which seems to generate a
sufficiently large set for the subsequent reduction phase.

^ If t is given as sequence diagram the model is instrumented as described in Sec. 2.4.
^ A promising test case achieves many partial coverages in short execution time.

www.manaraa.com

Minimizing Test Execution Time During Test Generation 231

function HeuristicSearch(model, PC)
testsuite=naiveSearch(model, PC);
for i=l to amount do

festcase=getBestTestcase(testsuite);
pc=getWorstPartialCoverage(testsuite);
extendedTestcase=tcGenerate(model, testcase, pc);
if (extendedTestcase^ e) then testsuite=testsuite U (extendedTestcasej;

od;
return testsuite;

3.2 Optimizing Testsuites by Min-Set-Cover-Algorithms

Originally, a min(imal)-set-cover algorithm constructs a small subset from a set of
sets, such that the union of sets in the small subset equals the union of the sets in
the original set. Since the minimal set cover problem is NP-complete [17], heuristic
algorithms are used. Here we want to adopt min-set-cover algorithms to eliminate test
cases, that are redundant w.r.t. the partial coverages they achieve, from the testsuite,
thereby reducing test execution time of the testsuite.

minsetcover : p(Traces) X M —> p(Traces)

minsetcover takes a testsuite and the reset time treset of the system that has to be
added after each test case to sum up the execution time of the testsuite.

A simple Greedy algorithm can be applied on a minimal set cover problem by
complementing the usual approach [15], i.e., we start with the full testsuite and try
to eliminate test cases but keep the same coverage. To select the next candidate for
elimination the function entry is used. In the simplest variant of a greedy algorithm
we set entry {testsuite,..., i , . . .) = testsuitei.

function greedyMinSetCover(testsuite, treset)
reducedTestsuite=testsuite;
for i=l to \testsuite\ do

testcase=entry(testsuite, reducedTestsuite, i, treset):'
if(\testsuite.subPC\==\(reducedTestsuite\{testcasej).subPC\)

then reducedTestsuite=reducedTestsuite\{testcase);
od;

The bidirectional Greedy Algorithm (see [15]) uses the same entry function but is
applied to the testsuite twice running from both directions through the testsuite.

A sorted Greedy algorithm improves testsuite optimization even further by using
a better entry function that sorts the test cases according to their quality, weakest
test case are returned first. For this purpose, the function getBestTestcase from the
heuristic search is recycled.

www.manaraa.com

232 Tilo Mitcke, Michaela Huhn

A force directed algorithm is derived from force directed scheduling algorithms
[16]. In difference to the previous greedy algorithms, the order in which the test cases
are selected as candidates for elimination is not fixed a priori, but depends on the test
cases that are still in the testsuite. We introduce a new function

timesCovered : PC x Testsuites —+ N

to calculate how many test cases of a testsuite satisfy a partial coverage.
The entry function selects the test case with the lowest quality according to

qualityitc) =
E

pcePC

times Covered (pc, reduced Testsuite) — 1
0

pc e suhPC{tc)
else

t. ,{tc)

The meaning of the formula is as follows: The numerator contains a metric for
the assets achieved by the test case tc. The asset is the smaller the more frequent a
partial coverage is achieved by other test cases in the testsuite. If tc is the last test case
achieving a partial coverage, the asset is set to infinity, which maximizes its quality and
prevents tc from elimination. In the denominator we have the test execution time of tc
and the reset time. Thus faster test cases are favored.

Finally, we combine a search for test case generation and an optimization by a
min-set-cover algorithm: Min3etCover{search{model,PG),treset)-

4 Case Study: Robot Control

Tab. 1. Optimised testsuites generated for the robot control software by EGRET

component

number of configurations
nunaber of partial coverages
testcase reduction (greedy) [%]
testcase reduction (heuristic) [%]
time reduction (greedy) [%]
time reduction (lieuristic) [%]

1 1
S
o

1 27
1
0
0
0
0

1
o

1
1 10*

7

50

SO

50

50

1
>

1
a.

216
3

67
67
69
69

T3

1
1
a
o
U 10'
14
86
86
86
86

1
s
1
256

5
60
80
60
80

1
u

10'-"
38
81
97
81
92

3
i l
§
U

1
10''
12
S3
92
82
88

10**
7
86
86
83
83

.1
0
00 o

1
10^"
32
81
97
79
93

3 o
10"
16
88
88
76
76

CO
00

1
&
10'
19
53
93
54
92

The presented techniques have been implemented in our Extendable Generator for
Efficient Testsuites (EGRET). EGRET imports UML models with some syntactic
restrictions from Rhapsody for Java (from i-logix) in the XMI1.2 format. A model
diagram as well as a statechart for each class is required. AND-states, method-calls
which are not used for sending events, all other data types but bounded integers and
booleans, and events with parameters are forbidden. However, we are working on a
version supporting top-level concurrency, OR-states within the statecharts, the call of
non-recursive functions and events with parameters. The exported system definition is

www.manaraa.com

Minimizing Test Execution Time During Test Generation 233

instrumented and translated to timed automata. Coverage criteria, search strategies and
min-cover-set-algorithms are plug-ins. Thus the tool can easily be extended. We are
using UPPAAL as a model checker for test case generation. Some search strategies
already use the possibiUty of a distributed execution of the model checker to lower test
generation time even more. The traces which are output of the model checker and
specify the test cases are translated into an XML-format which can be executed by a
testdriver via a middleware on the components under test.

In the Collaborative Research Centre 562 "Robotic Systems for Handling and
Assembly", a robot control software for parallel and hybrid kinematic machines has been
developed. All components of the system have been modelled during the development
process using sequence diagrams and later on statecharts [18]. The system consists of 16
components, with 27 up to ~ 2 * 10^° configurations each, resulting in a state space of
about 5 * 10^^ states. The test generator is capable of generating conformance testsuites
for all components and interoperability testsuites for pairs of communicating processes.

We applied EGRET to the statechart description of the robot control software, using
different optimisation techniques. Table 1 shows, how the testsuite size can be reduced
by a simple search combined with a bidirectional greedy algorithm and a heuristic
search combined with a force directed greedy algorithm. The second approach reduces
the test execution time up to 7% of the execution time of the unoptimised testsuite. The
best results have been achieved in optimising the testsuites of large components, like
the RoboProgClient, the RoboProgServer and the CycleThread. However, in case of
smaller components, the results for the heuristic search and the simple search both
combined with min-cover-set-algorithms are the same.

5 Conclusion

We presented an approach for automated model based testsuite generation. We considered
a catalogue of test quality criteria, namely the test of system properties or interaction
sequences, various coverage criteria, and mutant testing. We showed how to uniformly
instrument state based models by adding variables or specific test drivers such that a
model checker searching for a subgoal encoded as partial coverage will generate a
trace that can serve as a test case for that subgoal. Thus, not only formal test quality
criteria like coverages but also expert knowledge and existing tests in terms of sequence
diagrams are integrated in an automated, formally founded test case generation smoothly.

Next we compared several heuristics for optimizing the test execution time without
decreasing the test quality. We combined search algorithms, adding redundancy on the
required coverages to a testsuite, with different min-set-cover algorithms that preserve
the set of coverages but minimize the execution time.

Our experimental results on the case study are promising under three aspects:
First, the test execution time could be significantly reduced. Second, the heuristics for
optimization are efficient w.r.t. time and memory consumption such that our approach
is applicable on medium sized real world case studies at least which is an significant
improvement compared to other approaches. Third, our approach favors the generation
of long test cases on which several subgoals (partial coverages) are tested. Thus, we

www.manaraa.com

234 Tilo Miicke, Michaela Huhn

avoid weaknesses w.r.t. the fault detection rate that were observed on other approaches
to automated testsuite generation.

In future, we will investigate the interdependence between different strategies for
automated model based testsuite generation and the ability to detect faults running the
testsuite. First insights have been given in [7,8], but a more systematic investigation can
lead to valuable hints for what kind of systems which strategy can be recommended.
Additionally, we plan to extend our work on mutant testing for state based models and
investigate alternative heuristic optimization algorithms for testsuite generation like e.g.
genetic algorithms.

References

1. Miicke, T., Huhn, M.: Generation of optimized testsuites for UML statecharts with time. In
Groz, R., Hierons, R.M., eds.: TestCom. Volume 2978 of LNCS., Springer (2004) 128-143

2. Engels, A., Feijs, L., Mauw, S.: Test generation for intelligent networks using model
checking. In Brinksma, E., ed.: Tools and Algorithms for the Construction and Analysis of
Systems. (1997)

3. Rayadurgan, S., Heimdahl, M.: Coverage based test-case generation using model checkers.
In: Intl. Conf. and Workshop on the Engineering of Computer Based Systems. (2001) 83-93

4. Hong, H., Lee, I., Sokolsky, O., Cha, S.: Automatic test generation from statecharts using
model checking. In Brinksma, E., Tretmans, J., eds.: Workshop on Formal Approaches to
Testing of Software (FATES). (2001) 15-30

5. Pretschner, A.: Classical search strategies for test case generation with constraint logic
programming. In Brinksma, E., Tretmans, J., eds.; Workshop on Formal Approaches to
Testing of Software (FATES). (2001) 47-60

5. King, K.N., Offutt, A.J.: A Fortran language system for mutation-based software testing.
Software-Practice & Experience 21(7) (1991) 685-718

7. Heimdahl, M.P., Devaraj, G., Weber, R.J.: Specification test coverage adequacy criteria =
specification test generation inadequacy criteria? In: Proceedings of the 8th IEEE International
Symposium on High Assurance Systems Engineering (HASE), Tampa, Florida (2004)

8. Heimdahl, M.P., Devaraj, G.: Test-suite reduction for model based tests: Effects on test
quality and implications for testing. In Wiels, V., Stirewalt, K., eds.: Proc. of the 19th IEEE
Intern. Conference on Automated Software Engineering (ASE), Linz, Austria (2004)

9. OMG: Unified modeling language specification (2003) Version 1.5.
10. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. International Journal on

Software Tools for Technology Transfer 1(1-2) (1997) 134-152
11. Diethers, K., Goltz, U., Huhn, M.: Model checking UML statecharts with time. In Jez^quel,

J.M., HuBmann, H., Cook, S., eds.: UML 2002, Workshop on Critical Systems Development
with UML. (2002)

12. Diethers, K., Huhn, M.: Vooduu: Verification of object-oriented designs usmg uppaal.
In Jensen, K., Podelski, A., eds.; TACAS. Volume 2988 of Lecture Notes in Computer
Science., Springer (2004) 139-143

13. Robinson-Mallett, C, Liggesmeyer, P., Miicke, T, Goltz, U.: Generating optimal distinguishing
sequences with a model checker. In: A-MOST '05: Proceedings of the 1st International
Workshop on Advances in Model-based Testing, New York, NY, USA, ACM Press (2005) 1-7

14. Sugeta, T., Maldonado, J.C, Wong, W.E.: Mutation testing applied to validate SDL
specifications. In Groz, R., Hierons, R.M., eds.: TestCom. Volume 2978 of LNCS., Springer
(2004) 193-208

www.manaraa.com

Minimizing Test Execution Time During Test Generation 235

15. Offutt, J., Pan, J., Voas, J.: Procedures for reducing the size of coverage-based test sets. In:
Proceedings of the Twelfth International Conference on Testing Computer Software. (1995)
111-123

16. Paulin, P., Knight, J.: Force-directed scheduling for the behavioural synthesis of asics. IEEE
Trans, on Computer-Aided Design 8(6) (1989) 661-679

17. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman and Company (1979)

18. Steiner, J., Diethers, K., Mticke, T., Goltz, U., Huhn, M.; Rigorous tool-supported software
development of a robot control system. In: Robot Systems for Handling and Assembly, 2nd
Colloquium of the Collaborative Research Center 562. (2005) 137-152

www.manaraa.com

An Integrated Regression Testing Framework to
Multi-Threaded Java Programs

Bixin Li^'^, Yancheng Wang^, and LiLi Yang^

^School of Computer Science and Engineering, Southeast University
No.2 Sipailou Road, Nanjing 210096, Jiangsu Province, P.R.China

^State Key Lab. for Novel Software Technology, Nanjing University
No.22 Hankou Road, Nanjing 210093, Jiangsu Province, P.R.China

bx.li@seu.edu.cn; http://cse.seu.edu.cn/people/bx.li

Abstract. Regression testing is a process to retest modified programs to examine
whether or not new bugs were introduced by a modification. Currently, most of the
selective regression testing methods have been presented to test non-concurrent
programs, but few of them discussed the regression testing of concurrent programs.
In this article, a selective regression testing framework based on reachability
testing is proposed to solve the retesting problems in testing multi-threaded Java
programs, where both the identification of related components and the selection
of test cases are mainly concerned. The integration of selective regression testing
techniques and the idea of concurrent programs reachability testing makes the
framework be efficient. The adaptation of ESYN-sequence based test data coverage
adequacy criterion improves the ability to find bugs.

Key words: Regression testing; Multi-threaded program; Reachability testing

1 Introduction

Regression testing is a process to retest modified programs to examine whether or not new
bugs were introduced by a modification. In other word, one goal of regression testing is
to ensure that new functionality will not affect adversely the correct functionality
inherited from the original program. Selective regression testing attempts to identify
and retest only those parts of the program that are related to a modification. There are
two important problems need to be solved in selective regression testing[3] [4]: how to
identify those existing tests that must be rerun since they may exhibit difl'erent behavior
in the changed program? and how to identify those program components that must
be retested to satisfy some coverage criterion? But it is very pity that even though
many regression testing methods have been proposed to test sequential programs, few
discussed the regression testing of multi-threaded Java programs. On the other hand,
Java is one of current main stream languages that is widely used to develop software in
different application areas, where Java supports concurrent programming with threads.
A thread is in fact a single sequential flow of control within a program, and each
thread has a beginning, an execution sequence, and an end. However, a thread itself is
not a program, it can not run on its own, it must runs within a program. Programs that
has multiple synchronous threads are called multi-threaded programs. Fig. 1 shows a
simple concurrent Java program that implements the Producer-Consumer problem.

Please use the foUawingformat when citing this chapter:

Li, B., Wang, Y., Yang, L., 2006, in IFIP International Federation for Information Processing, Volume 227, Software
Engineering Techniques: Design for Quality, ed. K. Sacha, (Boston: Springer), pp. 237-248.

www.manaraa.com

238 Bixin Li, Yancheng Wang, LiLi Yang

te24. public void ruiiO{
s25. while(true){
s26. iniiame=q.Read();
s27. useQ;

}
}

s28. public useO
{

s29. System.out.println(" Used name is:"+inname);

} '
}

ce30. class Buffer {
ce31. String name="unlaiown";
ce32, boolean bFuU=false;

me33. public synchronized void Write(String value) {
s34. if(bFuU)
s35. try {waitQ;} catch (Exception e) {}
s36. name= value;
s37. try {Thread.sleep(l);} catch (Exception e) {}
s3S. bFull=true;
s39. notifyO;

}
me40, public synchronized String ReadO{
s41. if(!bFull)
s42. try {waitO;} catch (Exception e) {}
s43, bFuU=faise;
s44. notiiyO;
s45. return name;

eel, public class ProdComs {
me2. public static void main(StringQ args) {
s3. Buffer q = new BufferO;
s4. new Thread(new Producer(q)).startO;
s5. new Thread(new Comsumer(q)).startO;

}
}

ce6. class Producer implements Runnable {
ce7. Buffer q;
oeS. String name;
e9. public Producer(Buffer q)

{
slO. this.q=q;

}
tel l , public void nmO{
sl2. inti=0;
s l3. while(true)

{
sl4. if(i=0){
sl5. name="BvenNumber";

}
else {

sl6, name="OddNumber";

}
Sl7. i=(i+l)%2;
si 8. q.Write(name);

}
}

}
cel9. class Comsumer implements Ruimable{
ce20. Buffer q;
ce21. String inname;
e22. public Comsumer(Buffer q){
s23. this,q=q;

}

}
}

Fig. 1. A Java program describing the Producer-Consumer problem

The program creates two threads Producer and Consumer. The Producer generates
an even or an odd alternatively, and stores it in a Buffer object. The Consumer consumes
all integers from the Buffer as quickly as they become available. Threads Producer and
Consumer in this example share data through a common Buffer object.

To execute the program correctly, two conditions must be satisfied: the Producer can
not put any new integer into the Buffer unless the previously putted integer has been
picked up by the Consumer, the Consumer must wait for the Producer to put a new integer
into the Buffer if it is empty. In order to satisfy the these two conditions, the behaviors of
the Producer and Consumer must be synchronized in two ways; ® the two threads must
not simultaneously access the Buffer, A Java thread can handle this through the use of
monitor to lock an object. When a thread holds the monitor for a data item, other threads
are locked out and cannot inspect or modify the data. ® the two threads must do some
simple cooperation. That is, the Producer must have some way to inform the Consumer
that the value is ready and the Consumer must have some way to inform the Producer
that the value has been picked-up. This can be done in Java by using a collection of
methods of Object class, where method wait() is for helping threads wait for a condition,
and notifyO or notifyAll() is for notifying other threads when that condition changed.

www.manaraa.com

An Integrated Regression Testing Framework to Multi-Threaded Java Programs 239

In this article, we suggest an integrated regression testing framework to test the
multi-threaded Java programs. The rest of this article is organized as follows: section 2
introduces several basic concepts and terminologies; section 3 introduces the integrated
framework; section 4 discusses the selective regression testing which will be adopted
in our framework; section 5 introduces the reachability testing based on extended
synchronization sequence; section 6 gives the case study; section 7 concludes the article
and discusses the works in the future.

2 Several concepts

In tliis section, we will clarify the meanings of some key concepts used in this article
so that we have a common concept foundation.

A synchronization object refers to an accessed shared variable. A synchronization
operation refers the operation on a synchronization object, it can be divided into
synchronization reading operation and synchronization writing operation on shared
variables.

A synchronization event is the process of synchronization operations on synchro
nization objects. A synchronization sequence (or SYN-sequence) means a sequence of
synchronization events arranged in time order, which is the executive order of the
synchi-onization events in concurrent programs. A Feasible SYN-sequence means the
synclironization sequence that can be really executed in the source code, while a valid
SYN-sequence refers to the ones that are specified to be able to be executed by a soft
ware specification. In general, the feasible SYN-sequences and the valid ones of a
program should be consistent, otherwise, there is an error in the implementation of the
program under test[5]. An event code block (or ECB) is defined as the code fragments
that are related to an event happened, it can be divided into synchronization event
code block (or SECode) and non-synchronization event code block (or NECode).
SECodes means the code fragments relating to a synchronization event, NECode
means the code fragments relating to a non-synchronization event.

3 Basic Idea of the Framework

3.1 Test-data Adequacy Criterion

A test-data adequacy criterion is a minimum standard that a test suite for a program must
satisfy [1]. An adequacy criterion is specified by defining a set of program components
and what it means for a component to be exercised. An example is the all-statements
criterion, which requires that all statements in a program must be executed by at least
one test case in the test suite. Here statements are the program components and a
statement is exercised by a test if it is executed when the program is run on that
test. Satisfying an adequacy criterion provides some confidence that the test suite
does a reasonable job for testing the program. In this article, the test-data adequacy

www.manaraa.com

240 Bixin Li, Yancheng Wang, LiLi Yang

criterion is a criterion based on Java multi-threaded Flow Diagram (or JMFD), we call
it all-feasible-ESYN-sequences criterion:

- The all-feasible-ESYN-sequences criterion is satisfied by a test suite T if for each
ESYN-sequence S there is some test case X in T that exercises 5. An ESYN-sequence
is exercised by test case X if it is executed when the program is run with input X.

3.2 Basic Testing Steps

In this iramework, the regression testing method to test multi-threaded Java programs is
suggested based on traditional selective regression testing and improved reachability
testing. The regression testing steps are listed here, but the detailed discussion will be
presented in section 4 and section 5:
1. Identify all ECBs to be tested.
2. Based on the criterion of covering all feasible ESYN-sequences, we select an

appropriate test case subset T' from T, satisfying T' C T.
3. Compute the feasible ESYN-sequence and test it deterministically for each test case

in T' based on the idea of reachabihty testing.
4. Judge whether or not it is necessary to design new test cases to meet the coverage

criterion. If the answer is positive, we should create new test cases T".
5. Compute the feasible ESYN-sequence and test it deterministically for each test case

in T" based on the idea of reachability testing.
6. Create the new available test case set for the modified program based on T, T' ,T"

and record the related running information that is useful to the regression testing
performed next time.
Being similar to traditional regression testing methods, step 1 and 2 are the basic

tasks to select the test case set. The big difference is that this method chooses to cover
all feasible ESYN-sequences as the criterion, but traditional methods choose to cover all
feasible SYN-sequences, paths or branches. In this framework, the ESYN-sequence is
composed of one or more ECBs, whereas each ECB consists of one or more SEC odes
and NECodes.

4 Identifying All ECBs To Be Tested

To identify the ECBs is to find all ECBs that are related to a modification, different
kinds of modifications will have different affections on a ECB, so it is necessary to
clarify which types of modification will be included in this article.

4.1 Types of the Modification

The types of program modification included in this article should be corrective
modification and progressive modification, thereinto:
1. Corrective modification only changes the internal behavior of a ECB, but doesnt

change the dependence relationships between two ECBs.
2. Progressive modification not only changes the internal behavior of a ECB, but also

change the dependence relationships between two ECBs.

www.manaraa.com

An Integrated Regression Testing FrameM'ork to Multi-Threaded Java Programs 241

Each of them can still be divided into following three sub-types of modifications: ®
statement modification means doing some modifications to a statement or a control
predicate. @ statement insertion means inserting a statement or a control predicate to a
program. @ statement deletion means deleting a statement or a control predicate from a
program.

We have difi'erent ways to identity the related ECBs when we do different
modifications to the multi-threaded programs. In this article, we will borrow concurrent
program slicing techniques to identify and capture those interested ECBs .

4.2 Slicing Multi-Threaded Java Programs

As to concurrent programs, there are several kinds of techniques are adopted to slice
them, thereinto, the technique based on MDG (multi-threaded dependence graph), which
was proposed by Zhao[9], is the representative one of them. For easy to understand,
we iterate it here in brief. The MDG of a concurrent Java program is composed of
a collection of thread dependence graphs each representing a single thread in the
program, and some special kinds of dependence arcs to represent thread interactions
between difi'erent threads. Then, the two-pass slicing algorithm based on MDG can be
described as follows: in the first pass, the algorithm traverses backward along all arcs
except parameter-out arcs, and set marks to those vertices reached in the MDG; In the
second pass, the algorithm traverses backward from all vertices having marks during
the first step along all arcs except call and parameter-in arcs, and sets marks to reached
vertices in the MDG. The slice is the union of the vertices of the MDG has marks
during the first and second steps. Similarly, we can also apply the forward slices of
concurrent Java programs. In addition to computing static slices, the MDG is also
useful for computing dynamic slices of a concurrent Java program.

4.3 Identifying the ECBs

In multi-threaded Java programs, the ECBs to be identified is the same level as method,
there are two strategies to identify the related ECBs using program sUcing: according
to the first strategy, we first compute the statement-level static slice with respect to the
slicing criterion js, v^, where s is the modified point and v is the modified variable; if
a ECB includes a statement or control predicate in the static slice, then mark the ECB.
By this way, we can identify all related ECBs. Obviously, we can do this easily by
using the method proposed by Zhao[9]. According to the second strategy, we can use
hierarchical slicing model[8] to identify all related ECBs.

In this article, we will discuss how to use the first strategy to identify ECBs to be
related to the modification, the steps that we propose in this article to identify ECBs
are as follows:
1. Create Java multi-threaded program dependence graph {MDG).
2. Compute statement-level static slice using the modified statement and variable as

the slicing criterion, basing on the graph-reachability algorithm.
3. Mark the ECBs that include the statements or control predicates in the static slice.

Forward slicing can be used to identify the ECBs affected directly or indirectly by
the modified value of the variables, while, the backward sHcing algorithm can be used to
identify the ECBs which directly or indirectly affect the values of variables to be modified.

www.manaraa.com

242 Bixin Li, Yancheng Wang, LrLr Yang

There are different identification methods of ECBs for different types of program
modification. In this article, as examples, we only discuss the types of modifications
and identification methods Usted in Tab. 1. In general, for each symbol + in Tab. 1, we
should compute a slice.

Tab. 1. The identification methods and the types of modifications

^^--Ijpes of modification

Identifying metliods^^^^^

Backward slicing

Forward slicing

Corrective modification

Statement

correction

-
-

Statement

deletion

-
+

Statement

insertion

+

+

Progressive modification

Statement

correction

+

+

Statement

deletion

-
+

Statement

insertion

+

+

Corrective Modification For corrective modification, the dependence representation
in the dependence graph of program P is completely same as that of program P',
because such modification does not change the dependence relationships between ECBs,
Therefore, for program P', it is enough to build the internal dependence relationships
only for the ECBs related to the modification. Based on the modified statement and
the variables used in it, we can compute the corresponding slice for three types of
modifications so as to identify the ECBs related to these modifications. The computing
steps are as follows:
1. Statement modification: compute the forward or backward slice for such modified

statement in program P'. The ECBs that include a statement or control predicate in
the slice will be regarded as the related ECBs.

2. Statement insertion: compute the forward or backward slice for such inserted
statement in program P'. The ECBs that include a statement or control predicate in
the sUce will be regarded as the related ECBs.

3. Statement deletion: compute the backward slice for such inserted statement in
program P. The ECBs that include a statement or control predicate in the shce will
be regarded as the related ECBs.

Progressive Modification For progressive modification, we need to build complete
MDGs for program P and P' respectively, because the dependence relationships
between ECBs have been changed after the modification, we should treat them
differently. As we know, there are three kinds of dependence relationships between
ECBs, i.e., synchronization dependence, data dependence and control dependence.
Synchronization dependence is produced by calling methods wait and notify to activate
event synchronizing. Data dependence is produced by the definition of a variable in one
ECB, whereas the use of the variable in another ECB. Control dependence is produced
by the happening of one event will be dependent on the condition in another event of the
same thread. For progressive modification, we can deal with it regarding to following
two cases; (1) The dependence relationships between ECBs have been changed but the
structure of organizing ECBs remains unchanged. Under this condition, the modification
to ECBs will cause the change of data dependence and control dependence, but won't
cause synchronization dependence to change. For that, we can identify those ECBs
related to computing the corresponding slice over the MDG of the modified program P'

www.manaraa.com

An Integrated Regression Testing Framework to Multi-Threaded Java Programs 243

based on above three types of modification: statement modification, statement insertion
and statement deletion. (2) Both the dependence relationships between ECBs and the
structure of organizing ECBs have been changed after the modification. The reason that
causes the structure of organizing ECBs to change is the insertion and deletion of the
synchronization ECBs. Therefore, we can identify those related ECBs as following steps:
1. The deletion of the synchronization ECBs: In the ECBs deleted from program P,

find the statement and variables which have dependence relationships with other
ECBs in program P and use these statements and variables as slicing criteria to
compute the backward slices. The ECBs related to these slices will be regarded as
the related ECBs.

1. The insertion of the synchronization ECBs: In program P', find those inserted
ECBs and determine the statements and variables which ai-e dependent on other
ECBs in program P', we use these statements and variables as slicing criteria to
compute the forward slices and backward slices. The ECBs related to these slices
will be regarded as the related ECBs.

3. The movement of the synchronization ECBs can be used replace the insertion and
deletion of the synchronization ECBs. If the result of moving synchronization ECBs
causes the dependence relationships to change, we use the changed statements and
variables as the slicing criteria to compute slices so as to determine those related
ECBs. Otherwise, we needn't do anything.

4.4 Identification Algorithm: Identifying All Related ECBs By Using Both
Backward and Forward Slicing

Program modification includes corrective modification and progressive modification.
Progressive modification consists of two kinds of types: the first type has not affected the
structure no matter what change you have done, the second type has changed the structure
when you do some modification. The second type is a kind of complex one that can be
regarded as the composition of many single-statement modifications, so it can be divided
into single statement modifications. To deal with such modification, it is needed not only
rebuild the program dependence graph of P ' , but also repartition the set of ECBs of
P ' . We compute the ECBs to be related for each modification to simple statement, the
resulting set of these ECBs will be the set of ECBs related to the second modification.

Once the related ECBs are identified, we can perform the regression testing to Java
multi-threaded programs as following steps ; (1) choose appropriate test cases based
on the relationships between old test cases and the identified ECBs; (2) compute the
feasible ESYN-sequences; (3) do the deterministic testing based on selected test cases
and the feasible ESYN-sequences.

How to build the relationships between old test cases and the identified ECBs
and how to choose properly test case are two important and complex questions, we
won't discuss them in details in this article. For simplicity, here we will focus on the
identification of related ECBs after the introduction of the regression testing method and
the construction of ESYN-sequence. As a case study, we use simple selection criterion:
for a given test case, if some related ECB is included in one of its ESYN-sequence, the
test case is also regarded as a selected test case. Even through the precise is not very
high, this technique can insure that the set of selected test cases is safe.

www.manaraa.com

244 Bixin Li, Yancheng Wang, LiLi Yang

5 Reachability Testing

In this section, we explain how to generate effective test sequences to satisfy the
all-feasible-ESYN-sequences criterion.

5.1 JMFD: A Java Concurrent Model

To describe exactly the concurrent mechanism of a multi-threaded Java program so as
to generate ESYN-sequence, we borrow the model from Li's method and extend its
functionahty by adding some new elements[7]. We call this model Java multi-threaded
flow diagram {JMFD), where the node denotes event, the edge denotes flow. The steps
for constructing JMFD are as follows:
1. Use square with round corner notation to denote the start node and end node of the

program, marked with start or end.
2. Use square notation, with the formula Sr or S^ being filled in it, to denote

synchronization read or write event respectively; use ellipse notation with a name
to denote a non-synchronization event; the creation and run event of a ttoead is
denoted as a non-synchronization event with Tname. start being filled in it.

3. Use solid line directed edge to denote the control flow in a program; use uniform
dashed line directed edge to denote the concurrent flow in multithreaded programs.

4. Use nonuniform dashed line directed edge to denote the synchronization control
flow among the synchronization events of difi'erent threads.

5. Starting from the main thread, construct the JMFD hierarchically till the JMFD for
the whole program has been constructed.
In this article, we mainly concerns the behavior feature of a multi-threaded Java

program for a given test case. Therefore, firstly, we should build the JMFD of a
multi-threaded Java program for the special test case. Fig 2 shows the JMFD of the
program in Fig. 1.

start

r

t

P2 y Sw

V
Fig. 2. The JMFD of Producer-Consumer program

www.manaraa.com

An Integrated Regression Testing Framework to Multi-Threaded Java Programs 245

5.2 Computation of the ESYN-sequences

For the feasible SYN-sequence S of concurrent program P, the prefixes of other
feasible SYN-sequence of P are called the race variants[5], and accordingly, for the
feasible ESYN-sequence S' of concurrent program P ' , the prefixes of other feasible
ESYN-sequence of P ' are also called the race variants.

We can compute the race variants of synchronization sequence by building a race
variant diagram that is a tree, where the node denotes a general prefix of a given feasible
synchronization sequence S or denotes one of its race variants. The creation process of
the tree nodes in the race variant diagram is completed by considering the all possible
orderings of synchronization read or synchronization write event. The building process
of race variant diagram is in fact the process to compute the variants of synchronization
sequences, when the whole race variant diagram is constructed, the computation
process of race variants of a synchronization sequence ends. To compute other feasible
synchronization sequence, we must use a given test case and corresponding race variant
of S to execute the replay operation of a concurrent program based on the prefix[2].
From the definition of ESYN-sequence, we have following proposition:

Proposition 1 If the time-order remains unchanged, a SYN-subsequence of a feasible
ESYN-sequence is a feasible SYN-sequence.

So, we can compute EYSN-sequence by extending the computing algorithm of
SYN-sequence so that it can deal with non-synchronization event[5][6]. For instance,
SYN-sequence\l\ ~ {Slj,Sj., S^,Sf,...) is a feasible synchronization sequence in
the Producer-Consumer program in Fig 1, the Consumer thread exercises the event
sequence S'|2J = (5^, Pi, 5^, Pi,. . .), meanwhile, the Producer thread exercises the
event sequence 5*131 = (P2,S'4,P2,5'^,...)- The event sequence 5 [3 | shows that
the synchronization event 5^ must happen after the non-synchronization event Pj ,
and that the non-synchronization event P2 must happen before the synchronization
event S^. Similarly, the non-synchronization event Pi must happen between the
synchronization events Si and S^. So, if we insert the non-synchronization event Pi,
P2 into SYN-sequence\l\ according to the event sequence constraint conditions during
the thread execution[5], we can obtain the ESYN-sequence. Tab. 2 shows a set of
ESYN-sequences, which is computed over the SYN-sequencem.

Tab. 2. The feasible ESYN-sequences computed from the SYN-sequence[\\

No.
1
2
3
4

ESYN-sequence
\r2, 0^, r2,i>r, i^i, 0^, Sj.,

{P2,S^,P2,S'r,S'i,P,,Si,
(- t 2 ; Oyj, Oj., r ^ j i ^ i , o^y, 0 , . ,

\^11 '~^vj) '-^r •) - ^ 2 5 ^-w ^ • ^ l) ^r 5

• •)

• •)
• •)

..)

The event sequence constraint condition during the thread execution are as follows:

All events in the thread, including synchronization event and non-synchronization
event, must be in time-order, i.e., the event sequence belonging to the same thread
in a ESYN-sequence must be consistent with the thread executuon event sequence

www.manaraa.com

246 Bixin Li, Yancheng Wang, LiLi Yang

- The running of events in a thread must happen after the thread is created. As a
example, in Fig.2, the event in Consumer thread must happen after the Mitial event
in the main tliread.

The algorithm for constructing ESYN-sequence is as follows:
1. For a given test case X and a given SYN-sequence S, compute the race variants of

SYN-sequence S, by changing its race condition.
2. Basing on the event sequences constraint conditions during the thread execution,

add all the non-synchronization events related to race variants of the SYN-sequence
to the race variant so as to construct the race variant of the ESYN-sequence.

3. Using test case X and the race variant of each the ESYN-sequence of S to perform
the multithreaded program replay operation based on prefixes so as to compute the
other feasible SYN-sequences and feasible ESYN-sequence produced.

4. For each new SYN-sequence, repeat steps 1,2 and 3 till no new ESYN-sequence
produced.

6 Case Study

6.1 Corrective Modification

Fig. 1 is a typical Java multithreaded program of the Producer-Consumer problem.
The program code can be divided into five non-synchronization ECBs including
Initial, Tp.start, Tc.start, ?% and Pi, and two synchronization ECBs including S^
and Sr- Fig 2 is a JMFD of the program in Fig.l where statement 3 forms the
non-synchronization event Initial representing the initialization operation, statement 4
and 5 forms non-synchronization events for the creation of threads Tp.start and Tc.start,
respectively.p is the name of Producer thread, c is the name of Consumer thread. The
statements from 10 to 17 form the non-synchronization event P2 in the Producer thread,
representing the event of producing data; statement 18 calls synchronization method
Write, which forms the synchronization event, marked as S^. Similarly, statement 26
calls synchronization method Read, which forms the synchronization event, marked as Sr.

The method called by statement 27 forms the non-synchronization event representing
the consuming operation. Now, suppose that we do some changes to the program, for
example, we change statement s38:bFull=true to bFull=false, then the process is as
follows using our regression testing method: firstly, we should create the multi-thi-eaded
program dependence diagram, and know from the MDG where such modification
has not caused the change of dependence relationships, so we can operate along
the case-modification branch in the identification algorithm for identifying ECBs for
the corrective modification. In program P', we use jsSS.bFulli, as slicing criterion
to compute forward slice and backward slice: the backward slice is -s41,s42" and
the forward slice is -me2, s4, tell,sl3,sl8,me33,s38''. The ECBs are related to
these resulting slices are: non-synchronization event code blocks Tp.start and P2,
and synchronization event code blocks S-u, and Sr- All these ECBs are the ECBs
related to the statement modification. Finally, we should select appropriate test case
to finish the reachability testing, and ensure each related ECB will be covered by
a test case at least. In other words, the coverage criterion is to cover all feasible

www.manaraa.com

An Integrated Regression Testing Framework to Multi-Threaded Java Programs 247

ESYN-sequences which includes the related ECBs. The testing result shows that there
are some faults with the corrective modification to statement 38, it makes infeasible
ESYN-sequence={P2,5^, Pi , 5^) become feasible ESYN-sequence

6.2 Progressive Modification

Suppose that we delete the statement s39 in the program in Fig.l, the consequence is
that the dependence edge from statements s39 to s42 will be deleted. Such modification
causes the dependence relationships between ECBs to change, it belongs to the type of
progressive modification. After the construction of MDG and JMFD of program P, we
can obtain the set of ECBs of program P by identifying the ECBs along the type of
statement deletion of progressive modification. The concrete steps are: (1) compute the
backward static slice w.r.t. slicing criterion jS39,monitor^ in program P based on the
identification algorithm of related ECBs, the result is -s39,s42". The related ECBs that
we have are synchronization event code blocks S^, and S^', (2)select enough test case
related to cover those related ECBs so as to do reachability testing and ensure each
related ECB will be covered by at least a test case; (3)perform the reachability testing
process. The result shows that there are some faults with the deletion of statements
s39,it will cause the deadlock of the program and make the feasible ESYN-sequences
covering Sw and S^ become infeasible ESYN-sequences.

7 Conclusion

In this article, we suggest a regression testing framework to test Java multi-threaded
programs based on the integration of both the improved reachability testing and
traditional selective regression testing of sequential programs. The adoption of selective
regression testing technique makes the efficient be high, the use of reachability testing
solves the problems that caused by the non-deterministic behavior of the multi-threaded
programs. Meanwhile, program slicing techniques aî e borrowed to identify the related
ECBs so as to increase the safety and decrease the total cost of the regression testing.

Acknowledgments. This work is partially supported by the National Science Foundation
of China (No. 60473065) and partially supported by the open foundation of State Key
Lab. for Novel Software Technology, Nanjing University(No.A2005 08). The authors
also thank those anonymous reviewers for their valuable suggestions on the draft.

References

1. D. Binkley. The application of program slicing to regression testing. Information and Software
Technology (I&ST) special issue on program slicing, 40 (11-12): 583-594, 1998.

2. R.Carver and K. Tai. Replay and testing for concurrent programs. IEEE Software, 3(1991);66-74
3. T. L. Graves, M. J. Harrold, J. Kim, A. Porters, G. Rothermel. An empirical study of regression

test selection techniques. ACM Transactions on Software Engineering and Methodology.
10(2), 2001.

www.manaraa.com

248 Bixin Li, Yancheng Wang, LrLr Yang

4. R. Gupta, M. J. Harrold, and M. L. Soffa An approach to regression testing using slicing. In:
Proceedings of the Conference on Software Maintenance, November 1992.

5. G. H. Hwang, K. C. Tai, and T. L. Huang. Reachability testing: an approach to testing
concurrent software. In: Proceedings of First Asia-Pacific conference on software Engineering,
246-255, 1994.

6. J. Lei, R. Carver. Reachability testing of concurrent programs. Technical Report
GMU-CS-TR-2005-1, George Mason University.

7. S. Li, H. Chen, and Y. Sun. A framework of reachability testing for Java multi-threaded
programs IEEE International Conference on System, Man and Cybernetics, 3(2004):2730-2734

8. B. Li, X. Fan, J. Pang, J. Zhao. A model for slicing Java programs hierarchically. J. Comput.
Sci. & Technol, 19(6):848-858, 2004.

9. J. Zhao. Slicing concurrent Java programs. In: Proceedings of Seventh International Workshop
on Program Comprehension, 126 -133, 1999

www.manaraa.com

DynAUoy as a Formal Method for the Analysis of Java
Programs

Juan P. Galeotti and Marcelo F. Frias

Department of Computer Science
School of Exact and Natural Sciences

University of Buenos Aires
Argentina

e-mail: {jgaleotti, mfrias)@dc.uba.ar

Abstract. DynAUoy is an extension of the Alloy specification language that
allows one to specify and analyze dynamic properties of models. The analysis is
supported by the DynAUoy Analyzer tool. In this paper we present a method
for translating sequential Java programs to DynAUoy. This allows one to use
DynAUoy as a new formal method for the analysis of Java programs. As an
application showing the utility of this formal method toward this task, we present
JAT, a tool for automated generation of test data for sequential Java programs,
implemented on top of the DynAUoy Analyzer.

1 Introduction

Alloy [9] is a relational modeling language. Its simplicity, object-oriented flavor, and
automated analysis support, have made this formal language appealing to a growing
audience. The Alloy Analyzer [10] transforms Alloy specifications (models) in which
domains' sizes are bounded to a fix scope, into propositions that are later fed to
SAT-solvers such as Berkmin [6] or IvIChafF [15]. Then, given an assertion to be verified
in the model, the Alloy Analyzer attempts to produce a model of the specification that
violates the assertion. If no such model is found within the provided scopes, we can
gain more confidence that the analyzed property holds in the model. Of course, a
counterexample suffices to show that the model is flawed. We will include a description
of Alloy's syntax and semantics in Section 2. It is nevertheless worth mentioning at
this point that Alloy models are static. That is, while Alloy functions seem to model an
input-output behavior by relating input and output variables, the classical first-order
semantics prevents actual state change or evolution.

The DynAUoy specification language was first introduced in [4] as an extension of
the Alloy language allowing us to cope with the lack of dynamics of Alloy. DynAUoy's
semantics is based on dynamic logic [8], making then possible to specify atomic
actions (and complex actions from these) that actually modify the state. It also allows
one to assert properties about these actions by means of partial correctness assertions
[2]. In [3] we presented the DynAUoy Analyzer, which allowed us to efi'ectively analyze
DynAUoy specifications.

Please use the following format when citing this chapter:

Galeotti, J.P., Frias, M.F., 2006, in IFIP International Federation for Information Processing, Volume 227, Software Engi
neering Techniques: Design for Quality, ed. K. Sacha, (Boston: Springer), pp. 249-260.

www.manaraa.com

250 Juan P. GaUotti, MarceloF. Frias

Contributions of the Paper

- From the foundational point of view, this paper introduces a translation of sequential
Java programs to DynAUoy. This translation provides us with a new formal method
for the analysis of Java programs using the DynAUoy Analyzer.

- In the applications side, we introduce JAT (Java Automated Testing), an application
of DynAUoy to the automated generation of test data for sequential Java programs.
JAT allows a user to generate test data according to various structural testing
criteria such as statement coverage, branch coverage or path coverage. JAT also
provides the user with information about non reachable code, and profits from the
existence of invariants and pre conditions written in JML [14], and previous partial
test suites, if these are available.

The paper is structured as follows. In Sections 2 and 3 we give brief introductions
to Alloy and DynAUoy, respectively. In Section 4 we show how to translate sequential
Java programs to DynAUoy. In Section 5 we present JAT, compare it with related work,
and evaluate its performance through examples. Finally, in Section 6 we present our
conclusions.

2 The Alloy Specification Language

In this section, we introduce the reader to the Alloy specification language by means of
an example. This example intends to Olustrate the standard features of the language and
their associated semantics, and will be used in further sections.

Suppose we want to specify systems handling lists. We might recognize that, in
order to specify lists, a data type for the data stored in the lists is necessary. We can
then start by indicating the existence of a set (of atoms) for data, which in Alloy is
specified using a signature:

sig Data { }

In this signature we do not assume any properties about the structure of data.
With data already defined, we can now specify what constitutes a list. A possible

way of defining fists is by saying that a list consists of a datum, and an attribute next
relating the current node to the remaining part of the list:

sig List { val : lone Data,
next: lone List }

The modifier "lone" in the above definition indicates that attributes "val" and "next"
may relate a list with at most one element. These are partial functions from List to
Data and List to List, respectively.

Alloy allows for the definition of signatures as subsets of the set denoted by another
"parent" signature. This is done via signature extension. For example, one could define
other (perhaps more complex) kinds of lists as extensions of the List signature:

sig Empty extends List {}
sie TwoList extends List (val2: Data T

www.manaraa.com

DynAlloy as a Formal Method for the Analysis of Java Programs 251

problem : := decl*form
decl : ;~ var : typexpr
typexpr :: =
type
1 type ~> type
1 type ==>- typexpr

form ::~
expr in expr (subset)
jlform (neg)
j form and form (conj)
j form or form (disj)
j all V : type/form (univ)
{ sojne V '. type/form (exist)

expr :: =
expr + expr (union)
1 expr &; expr (intersection)
1 expr — expr (difference)
j ' - ^ expr (transpose)
1 expr.expr (navigation)
j *expr (refl. t rans, closure)
j "expr (transitive closure)
1 {v : t / fo rm} (set former)
{ Var

Var :: =
var (variable)
1 Var[var] (application)

Fig. 1. Grammar of Alloy

As specified in these definitions, Empty and TwoList are special kinds of lists. In TwoList,
a new attribute val2 is added to each list. As the previous definitions show, signatures
are used to define data domains and their structure. The attributes of a signature denote
relations. For instance, the "val" attribute in signature List represents a binary relation,
from fist atoms to atoms from Data. Given a set L (not necessarily a singleton) of List
atoms, L.next denotes the relational image of L under the relation denoted by next.
Signature extension, as we mentioned before, is interpreted as inclusion of the set of
atoms of the extending signature into the set of atoms of the extended signature.

In Fig. 1, we present the grammar and the (informal) semantics of Alloy's relational
logic, the core logic on top of which all of Alloy's syntax and semantics are defined.
Adding a bit more of notation, given singleton unary relations A = {a} and B = { 6 },
we define A—^B = {{a,b)}. Given a binary relation R, we define the update of R
by the pair A ^ B hy

R++ {A--^B) = {{x,y)€R:xy^a}u{{a,b)} .

So far, we have just shown how the structure of data domains can be specified
in Alloy. These models can be enriched with the addition of operations, properties
and assertions. Following the style of Z specifications, operations in Alloy can be
defined as expressions, relating states from the state spaces described by the signature
definitions. Primed variables are used to denote the resulting values, although this is
just a convention not reflected in the semantics. In order to illustrate the definition of
operations in Alloy, consider, for instance, an operation that specifies the appending of
a datum to the front of a list (usually called Cons):

pred Cons(d ; Data, 1,1' ; List){
l'.val = d and 1'.next = 1} ^^

As the reader might expect, a model can be enhanced by adding properties (axioms)
to it. These properties are written as logical formulas called _^c& in Alloy. We reproduce
some here. It might be necessary to say that lists are acyclic

fact AcyclicLists{ all 1 : List j 1 !in l.("next) }
fact OneEmotvi one Emptv \.

www.manaraa.com

252 Juan P. Galeotti, Marce/o F. Frias

The keyword "one" states that the set (unary relation) Empty is a singleton. More
complex facts can be expressed by using the quite considerable expressive power of the
relational logic. Assertions are the intended properties of a given model. Consider, for
instance, the following simple Alloy assertion, regarding the presented example:

assert ToEmpty{ all 1: List \ 1 != Empty implies Empty in l.^next }

This assertion states that non empty lists (eventually) reach the empty list. Assertions
are used to check specifications. Using the Alloy analyzer it is possible to validate
assertions by searching for possible (finite) counterexamples for them under the
constraints imposed in the specification.

3 The DynAUoy Specification Language

DynAUoy is an extension of the Alloy modeling language. It allows us to define
atomic actions that modify the state, and build more complex actions from the atomic
ones. Atomic actions are defined by means of pre and post conditions given as Alloy
formulas. For instance, atomic actions that retrieve the first element in a Hst, or remove
the front element from a list are specified by

act Head(l : List, d : Data) act Tail(l : List)
pre = { 1 != Empty } pre = { 1 != Empty }
post = { d' = l.val } post = { r = l.next }

The primed variables d' and F in the specification of actions Head and Tail denote
the value of variables d and 1 in those states reached after the execution of the actions.
While actions may modify the value of all variables, we assume that those variables
whose primed versions do not occur in the post condition retain their corresponding
input values. Thus, Head modifies the value of d, but I keeps its initial value. This
allows us to use simpler formulas in pre-post conditions.

Equally important, DynAUoy allows us to assert properties about complex actions
by means of partial correctness assertions. For instance,

{ 1 != Empty }
Head(l, d);
Tail(l)

{ Cons(d',l',l) }

The syntax of DynAlloy's formulas extends the one presented in Fig. 1 with the
addition of the following clause for building partial correctness statements:

formula ::= . . . | {formula} program {formula} "partial correctness"

Figure 2 shows how complex actions are built from atomic ones. Figure 3 describes
the semantics of DynAUoy.

One of the important features of Alloy is the automatic analysis possibilities it
provides. Similarly, in [3] we show how to translate DynAUoy specifications to Alloy
specifications in order to achieve analyzability. We reproduce the fundamental aspects

www.manaraa.com

DynAlloy as a Formal Method for the Analysis of Java Programs 253

act ::= p{pre{x)}{post{x)} "atomic action"
I formula! "test"
I act + act "non-deterministic choice"
I act; act "sequential composition"
I act* "iteration"

Fig. 2. Grammar for DynAlloy's Actions

M[{a}p{/3}]e = M[a]e => Ve'((e, e') e P[p] ==^ M[/3]e')

P : program —> V {env x env)
P[{pre, post}] = { (e, e') : M[pre]e A Mlpost]e' }
P[a7] = {{e,e') : M[a]eAe = e'}
P[pi+P2\ = P[pi]UP\p2]
P\pi;P2] = PlpihPlP2]
P\P1 - PIPT

Fig. 3. Semantics of DynAlloy.

of this translation below, and refer the reader to [3] for optimizations. We define below
a function wlp : program x formula —> formula that computes the weakest liberal
precondition [2] of a formula according to a program (composite action). We will in
general use names a;i, a;2 . . . for program variables, and will use names a;̂ , X j , . . .
for the value of program variables after action execution. We will denote by a|^ the
substitution of all free occurrences of variable x by the fresh variable v in formula a.

When an atomic action a specified as a{pre(x)}{post{x, x')} is used in a composite
action, formal parameters are substituted by actual parameters. Since we assume all
variables are input/output variables, actual parameters are variables, let us say, y. In
this situation, function wlp is defined as follows:

^H<y)J] = Pre\^ =^ all n (p o s t l l f = ^ / | |) . (2)

A few points need to be explained about (2). First, we assume that free variables in /
are amongst y', x^. Variables in x^ are generated by the translation function peat
given in (3). Second, n is an array of new variables, one for each variable modified by
the action. Last, notice that the resulting formula has again its free variables amongst
y\ x^. This is also preserved in the remaining cases in the definition of function wlp.

For the remaining action constructs, the definition of function wlp is the following:

wlp[gl,f] ^ g ^ f
wlp[pi+p2,f] = wlp\j3i, f] A wlp\p2, f]
'wlp\pi;P2j] = wlp\pi,wlp\p2,f]]
wip\p*j] = Ar=o^w,f]-

Notice that wlp yields Alloy formulas in all these cases, except for the iteration
construct, where the resulting formula may be inflnitai-y. In order to obtain an Alloy
formula, we can impose a bound on the depth of iterations. This is equivalent to
fixing a maximum length for traces. A function Bwlp (bounded weakest liberal

www.manaraa.com

254 Jiian P. Galeotti, Marcelo F. Frias

precondition) is then defined exactly as wl-p, except for iteration, where it is defined by
Bwlp\p*,f] = Ar=o Bwlp\p^, /] , and n is the scope set for the depth of iterations.

We now define a function peat that translates partial correctnes_s_assertions to Alloy
formulas. For a partial correctness assertion {aijj)] P{y) {(]{y,y')}

pcat{{a} P {P}) =\fy ia ==> iBwlp p,P
ly

\y
. 0 / • (3)

Of course this analysis method where iteration is restricted to a fixed depth is not
complete, but clearly it is not meant to be; from the very beginning we placed restrictions
on the size of domains involved in the specification to be able to turn first-order
formulas into propositional formulas. This is just another step in the same direction.

4 Translating Java Programs to DynAUoy

It will be made clear in this section that once DynAUoy is available, translating Java
becomes immediate. It is also clear that other programming languages, or description
languages, can be easily translated to DynAUoy without requiring complicated ad-hoc
translations. In Fig. 4 we present the grammar for the subset of Java we wUl translate
in this article. We have also dealt with dynamic dispatch, but is not treated in this
paper due to space Umitations.

program ::= classdecl* procdecl*
classdecl ::= class class {class field;}
procdecl ::= class static proc (class var,){stmt}
stmt ::= var = new class()

I var = expr
I expr.field = expr
I while pred { stmt)
I if (pred) stmt else stmt
I stmt ; stmt

expr ::= null | var | expr.field
I expr.proc(expr,.. .,expr)

pred :;= expr (boolean)
I expr == expr | !expr | expr && expr

Fig. 4. The syntax of a subset of Java

In order to handle aliased objects appropriately, we adopt the object model of
JAUoy [11]. The JAUoy model of the List signature requires just a basic signature for
Usts without fields

sig List { } ,

and fields are considered as binary relations

val : List —> lone Val,
next : List —»• lone List .

www.manaraa.com

DynAlloy as a Formal Method for the Analysis of Java Programs 255

These binary relations can be modified by the DynAlloy actions. We will in general
distinguish between simple data that will be handled as values, and structured objects.

Action SetNext is now specified as follows:

act SetNext(ll, 12 : List, next: List -^ lone List)
pre = { 11 != Empty }
post = { next' = next ++ (11 -^ 12) }

We introduce now in DynAlloy atomic actions that create objects, and atomic
actions that modify an object's field. We denote by Objects^; the unary relation (set)
that contains the set of objects from class C alive at a given point in time. This set can
be modified by the effect of an action. In order to handle creation of an object of class
C in DynAlloy, we introduce an atomic action called NewC, specified as follows:

act NewC(o : C)
pre = { true }
post = {o' !in Objects^ and o' in ObjectSQ'}

Notice that Objectsc should have been passed as a parameter. In order to maintain
notation simple, we keep this kind of variables global. An atomic action that sets the
value of field f of object o, is described in DynAlloy as follows:

act Setf(o : C, V : C, f : C -^ C)
pre = { 0 in Objectsc }
post = { f' = f ++ (o -^ v) }

From the class extension hierarchy in Java, a signature extension hierarchy is
defined in DynAlloy. A class declaration

class C {
Ci fleldi;

Ck fieldfc;}

produces a DynAlloy model that includes definitions for a signature C and the necessary
actions for creating objects and modifying their fields:

sig C { }

NewC(o : C)

Setfieldi(o : C, v : Ci, fieldi : C -^ Ci)

Setfieldfc(o : C, v : C^, fieldfc : C -> C^)

We proceed now to the ti-anslation of simple statements.

V = new C Ĥ NewC(v) .

www.manaraa.com

256 Juan P. Ga/eotti, Marcelo F. Frias

In order to translate assignment of an expression to a variable, we introduce action
VarAssign as follows:

act VarAssign(vl, v2 : C)
pre = { true }
post = { vl ' = v2 }

The translation then becomes:

V = e i-> VarAssign(v,e) .

In order to translate the assignment of an expression e to the /-field of an object o,
we use action Set/. The translation of the statement then becomes;

o.f = e i-> Set/(o,e,/) .

For more complex program constructs, the translation is defined as follows,

while pred {stmt} M- (pred?; stmt) *; (! pred) ?,
if (pred) stmtl else stmt2 h-+ (pred?;stmtl) + ((!pred)?;stmt2),
stmtl ; stmt2 i-> s t m t l ;s tmt2,

where the boldface stmt, s t m t l and s tmt2 stand for the recursive application of the
translation to the statements stmt, stmtl and stmt2, respectively.

5 Test-Data Generation with JAT

JAT is a tool that generates test input data for Java methods according to different
white-box testing criteria. The current prototype of JAT does statement coverage, branch
coverage and path coverage. In order to obtain a finite Alloy formula, we finitize the code.
This is done by performing up to a predetermined (user defined) number of loop unrolling
or recursive call unfolding. Also, for those methods called from the analyzed method that
are provided with a JML contract, the user can choose whether she/he prefers to use the
contract in the test generation process, or rather to inline the code in the caller method.

In Section 5.1 we describe the architecture of JAT. In Section 5.2 we present a case
study. Finally, in Section 5.3 we analyze related work.

5.1 The Architecture of JAT

Figure 5 provides the architecture of JAT. Boxed entries in the figure correspond to
processes, while non boxed entries correspond to data. Arrows show the flow of data
between processes. JAT takes, as a mandatory input, compilable source Java code,
together with an indication of the method to be tested. Optional inputs to the tool are
a partial JUnit [12] test suite, and JML [14] annotations for data invariants and pre
conditions of methods.

www.manaraa.com

DynAlloy as a Formal Method for the Analysis of Java Programs 257

Java partial JUnit
method test suite

CFG
thinner

tliinned Java
nf\ethod

JML invariants,
precondition

Java—»DynAUoy
translation

JML-+Alloy
translation

DynAlloy
specificati specification

Alloy invariants,
precondition

Fig. 5. Ai-chitecture of JAT

The Control Flow Graph Thinner The thinner starts by constructing the method's
control flow graph (CFG). Given the source code for the method under analysis, and
the partial test suite (if any tests are available), the CFG thinner analyzes the coverage
produced by the provided test suite. It runs first the method under analysis in all
input data available in the provided test suite, and marks the traversed statements and
conditions in the CFG. In this way we have a partial coverage of the CFG. Notice that
a good starting test suite will greatly improve the test input data generation process.

The CFG thinner then produces appropriate subgraphs of the CFG to be translated
to DynAlloy in order to look for new test input data. From the supplied subgraph of the
CFG, JAT produces one input datum. The source method is then executed on this input,
and the coverage marking in the original CFG is updated by adding the marking of the
newly covered statements and conditions. The thinning process then starts again from
the newly marked CFG.

Notice that retrieving proper subgraphs of the CFG allows us to get better analysis
times by reducing the size of the problem to be solved.

The JML—ŝ Alloy Translator JML [14] preconditions and data invariants allow us to
generate better test input data, i.e., generation of data that does not satisfy invariants or
is not expected as input from the method is prevented.

www.manaraa.com

258 Juan P. Galeotti, Marce/o F. Frias

The DynAlloy Analyzer The DynAlloy Analyzer is used in order to find a model of the
specification produced by the Java—>DynAlloy translation. In case the DynAlloy Analyzer
succeeds in finding an appropriate model, from this model we can retrieve a path on the
DynAlloy code (and therefore on the original Java code), as well as an input datum i.

The Test Case Generator We will call the path in the Java code inferred from the
DynAlloy Analyzer abstract, as opposed to the concrete path in the Java code obtained
by executing the Java source code with input i on the Java virtual machine. Although it
seems like both paths ought to be the same, the use of incorrect JML specifications
may produce wrong paths. The test case generator then generates the concrete path and
compares the abstract and concrete paths. If they are different, it generates a report for
the user, and a JUnit test showing the difference between the value obtained by the
concrete execution and the value at the end of the abstract path is generated. This helps
the user in finding bugs in the JML specifications. In case the abstract and the concrete
path agree, a JUnit test template is generated containing a description of the found
input datura. This template is then fed to the CFG thinner.

5.2 Case Study: Red-Black Trees

In order to evaluate the usability of JAT, we looked for branch coverage in an
implementation of sets using red-black trees. The unplementation was obtained from
the class TreeMap in the java.util package. We analyzed the method "add" that inserts
an element in a tree and restores the red-black tree invariant.

In order to handle trees whose height is less than or equal to 6, we performed up to 6
loop unrolls in method treelnsert. The total number of lines of code checked, considering
the inlined methods and the loop unrolls, is of approximately 230 lines. There are
16 branches to be covered. Following the technique we described in Section 5.1, the
CFG thinner produced 9 subgraphs of the CFG. Looking for test inputs from these 9
CFGs allowed us to cover 15 out of the 16 branches, within a scope of 4. Actually, the
remaining branch corresponds to an if statement where the if branch is always taken.

In Table 1 we present the analysis tunes of JAT using DynAlloy. SAT-solvers are
usually very sensitive to increases in scope. Fortunately, test input data generation
most of the times requires small structures to achieve a high coverage, and therefore
SAT-solving becomes a viable technique. This hypothesis on the factibility of using
small scopes is known as the small scope hypothesis. Different columns show the
analysis time for different scopes. Running times were computed in a computer witli a
64-bit AMD Athlon 3200 with 2 GB of RAM running on a dual channel architecture.
Time is expressed in seconds.

Scope 3
52

4
56

5
63

6
80

7
101

8 1 9
101 1 102

10
120

11
150

Tab. 1. Running times for the generation of test data.

www.manaraa.com

DynAlloy as a Formal Method for the Analysis of Java Programs 259

5.3 Related Work

A vast amount of research on test input data generation has been done in the last few
years. Some research, as is the case in the SLAM project [1] or in the case of the
DART tool [5], assumes absence of aliasing. On the other hand, we aim at the analysis
of programs that make extensive use of complex structures. Other research points
toward specification testing. For instance, TestEra [13] uses the Alloy Analyzer for
specification based testing. Tools such as CUTE [16], Symtra [18], or the work of
Visser et al. [17] using Java Pathfinder, base their research on symbolic execution. We
solely depend on SAT-solving for analysis purposes. An approach close to ours is the
one followed in the INKA tool [7]. The tool handles complex data structures in C, but
cannot handle dynamic allocation.

6 Conclusions

We have presented a novel formal method for the analysis of Java programs based on a
translation of Java programs to DynAlloy, and the use of SAT-solvers. The experiments
we have conducted show that JAT can be effectively used in the analysis of non trivial
Java methods that create objects and handle complex data.

References

1. Ball. T, A Theory of Predicate-Complete Test Coverage and Generation. Technical Report
MSR-TR-2004-28, Microsoft Research, Redmond, WA, April 20004.

2. Dijkstra E. W. and Scholten C. S., Predicate calculus and program semantics, Springer-Verlag,
1990.

3. Frias, M. R, Galeotti, J. R, Lopez Pombo, C. G., and Aguirre, N. M. DynAlloy: Upgrading
Alloy with actions. In Proceedings of the 27th. International Conference on Software
Engineering, G-C. Roman, Ed. Association for the Computer Machinery and IEEE Computer
Society, ACM Press, St. Louis, Missouri, USA, 2005, 442-450.

4. Frias M.F., Lopez Pombo CO., Baum G.A., Aguirre N.M. and Maibaum T.S.E., Rea
soning About Static and Dynamic Properties in Alloy: A Purely Relational Approach, in
ACM-Transactions on Software Engineering and Methodology (TOSEM), 14(4), 478 - 526,
2005.

5. Godefroid P., Klarlund N. and Sen K., DART: Directed Automated Random Testing, in
Proceedings of the ACM SIGPLAN 2005 Conference on Prograinming Languages Design
and Implementation (PLDI), 2005.

6. Goldberg, E. and Novikov, Y. BerkMin: A fast and robust sat-solver. In Proceedings of the
conference on Design, automation and test in Europe, C. D. Kloos and J. da Franca, Eds.
IEEE Computer Society, Paiis, France, 142-149, 2000.

7. Gotlieb A., Denmat T. and Botella B., Constraint-Based Test Data Generation in the Presence
of Stack-Directed Pointers, in Proceedings of ASE'05, Long Beach, CA, USA, ACM Press.

8. Harel D., Kozen D. and Tiuryn J., Dynamic Logic, MIT Press, October 2000.
9. Jackson, D. Alloy: a lightweight object modeling notation. ACM Transactions on Software

Engineering and Methodology 11, 2, 2002, 256-290.
10. Jackson D., Schechter I. and Shlyakhter I., Alcoa: the Alloy Constraint Analyzer, Proceedings

of the International Conference on Software Engineering, Limerick, Ireland, June 2000.

www.manaraa.com

260 Juan P. Galeotti, Marcelo F. Frias

11. Jackson D. and Vaziri, M., Finding Bugs with a Constraint Solver, in Proceedings of the
International Symposium on Software Testing and Analysis (ISSTA), August 21-24, 2000,
Portland, OR, USA. ACM, 2000, pp. 14-25.

12. JUnit: http://www.junit.org.
13. Khurshid S. and Marinov D., TestEra: Specification-Based Testing of Java Programs Using

SAT, Automated Software Engineering 11(4): 403-434 (2004)
14. Gary T. Leavens, Albert L. Baker, and Clyde Ruby, Preliminary Design ofJML: A Behavioral

Interface Specification Language for Java. TR 98-06-rev27, Iowa State University, Department
of Computer Science, April 2005.

15. Moskewicz, M. W., Madigan, C. R, Zhao, Y., Zhang, L., and Malik, S. Chaff: engineering an
efficient SAT solver. In Proceedings of the 38th conference on Design automation, J. Rabaey,
Ed. ACM Press, Las Vegas, Nevada, United States, 2001, 530-535.

16. Sen K., Marinov D. and Agha G., CUTE: A Concolic Unit Testing Engine for C, in
Proceedings of the ACM SIGSOFT Conference on Foundations of Software Engineering,
Lisbon, Portugal, 2005.

17. Visser W., Pasareanu C , Khurshid S., Test Input Generation with Java PathFinder,
in Proceedings of the ACM/SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2004, Boston, Massachusetts, USA, July 11-14, 2004. ACM 2004,
pp. 97-107.

18. Xie T., Marinov D., Schulte D, and Notkin D., Symtra: A Framework for Generating
Object-Oriented Unit Tests Using Symbolic Execution, in Proceedings of TACAS 2005.

www.manaraa.com

Verification of UML State Diagrams Using Concurrent
State Machines

Jerzy Miescicki

Institute of Computer Science, Warsaw University of Technology
00 665 Warszawa, ul. Nowowiejska 15/19

email: J.Miescicki@ii.pw.edu.pl

Abstract. Numerous research projects are done in academia as well as in
industry aimed to support the design process based on UML and Model Driven
Architecture with new methods and tools that would help to verify both static
and dynamic aspects of UML model, to generate the code from it etc. Much
attention is paid to the verification of system's behavior by model checking. In a
research project done in the Institute of Computer Science, Warsaw University of
Technology, an own model checking environment COSMA is used for these
purposes. The approach is based on Concurrent State Machines (CSM), a
finite state model well-suited to the representation of systems of concurrent,
communicating components. In the paper, the representation of UML state
diagrams in terms of CSM is explained and illustrated with an example.

1 Introduction

The progress in the area of new ideas and standards related to Unified Modeling
Language (UML, e.g. [1], [2]) is accompanied with an extensive research aimed to
support the designer with methods and tools for the verification of static as well as
dynamic aspects of a designed system, for generation of code inmiediately from the
UML specification etc. Among other topics, much attention is paid to the behavioral
verification of UML models using model checking techniques.

The general idea of model checking ([3], [4]) is to construct a finite-state formal
structure S, representing the behavior of a system to be verified (e.g. a Labeled
Transition System, a reachability graph etc.). Then, the property we want to verify
(TT, say) has to be formally specified: e.g. as a formula of some temporal logic, or a
Biichi automaton [4]. Then, we have to check if S \= TT, that is, if TT holds for S. The
evaluation of 5 |= TT involves the exhaustive inspection of S.

Notice that as S is finite, the evaluation of any (properly specified) property is
decidable and can be algorithmized, at least if we postpone problems related to the size of
S and to the complexity of algorithm. This way, the system designer can be equipped with
a set of ready-to-use algorithms and techniques for the analysis of system's properties.
Moreover, if the checked property does not hold, he/she can obtain a counterexample,
i.e. the path of events leading to the just-identified failure. This provides the feedback
information enabling the designer to identify and correct the component which is
responsible for a negative outcome of the checking. Unfortunately, finite state methods
suffer also some drawbacks. Their very nature prohibits the use of infinite buffers,

Please use the followingformatwhen citing this chapter:

Miescicki, J., 2006, in IFIP International Federation for Information Processing, Volume 227, Software Engineering Tech
niques: Design for Quality, ed K. Sacha, (Boston; Springer), pp. 261-271.

www.manaraa.com

262 Jerzy Miescicki

dynamic creation/destruction of processes makes a problem, etc., and the main challenge
the model checking is confronted with is the exponential explosion of the model.

Practical implementation of the above general idea of model checking involves
multiple decisions. Usually, systems consist of multiple components which share the
common resources and communicate among themselves. How their behavior is to be
specified and how these individual behaviors are to be composed into one, finite state
behavioral model S ? How this model has to be stored, remembering that its size may
be of order of 10^° — 10^° states or even more? What should be a form of specification
of properties? How to perform effectively an exhaustive inspection of such an large
model 5? All these questions can be solved in many ways, so that there is a range of
different software tools (or model checkers) designed for these purposes. Among the
most frequently referenced ones are SPIN [5], SMV [6], FormalCheck [7] and - for
checking systems with real-time constraints - Uppaal [8] and Kronos [9]. A few dozen
of other tools of this type have been implemented for academic and research purposes.

In the context of the verification of UML models' the primary form of behavioral
specification of objects are - quite naturally - UML state, collaboration and sequence
diagrams, supported by practically all CASE tools. Since the first attempt by LiUus and
Palter (vUML tool, [11]), a most typical approach is the conversion of UML state
diagrams (serialized into XMI format) into the input language of some renowned
model checker (usually SPIN's Promela language). Later on, the verification itself is
entrusted to the model checker. A good example can be project Hugo [14] [12] [13],
where UML diagrams are converted into inputs of two separate model checkers (SPIN
and Uppaal, the latter one for the verifiation of timed models) and - aditionally - to the
third module which has to generate the Java code.

In contrast to this, in the research project COSMA (Institute of Computer Science,
WUT, [15]) an original model checking software environment is used, implemented
within the project. The conceptual framework of COSMA are Concurrent State Machines
(CSM, [16]). CSM support the communication among system components as well
as two aspects of concurrency: possible simultaneous occurrence of coimnunication
events (formally - symbols instantaneously broadcasted to all system components)
and simultaneous execution of actions of components . No special mechanism for
interleaving actions or sequencing the input is assumed. However, single symbols,
communication delays, nondeterministic loss of symbols, (finite) buffers as well as
specific sender - receiver pairs (instead of broadcast-mode communication) can be also
modeled, but as a deliberate decision rather than as an implicit general assumption.

Below, in Section 3 we introduce the idea of a system of CSM and the way the
behavior of individual machines is composed into one graph of all-system behavior. To
support reader's intuition, the presentation of the CSM model is preceeded by a known
example of ATM-Bank system (Section 2). Subsection 3.3 will be devoted to the process
of verification, specifically - to the technique of stepwise model reduction [17] which at
least helps to overcome the exponential explosion of the model. In Section 4 the main
problems with the conversion of UML state diagrams into CSM are summarized.

' see e.g. [10] for concise identification of problems and the basic literature.

www.manaraa.com

Verification of UML State Diagrams Using Concurrent State Machines 263

2 The ATM-Bank example

As an illustration, let us consider a system (frequently used also elsewhere in the
literature), consisting of single automatic teller machine (ATM) and a bank computer.
Simple UML state diagrams of system components are shown in Fig. 1 and 2. The
ATM provides the interface to the User (not shown). ATM communicates to the User
by displaying the following texts:

InsertCard, EnterPIN, Enter Amount, TakeCard, TakeMoney, Cardlnvalid

while the User is expected to respond appropriately with events like Card (inserting the
card into ATM slot), PIN (entering PIN), Amount (entering the amount), CardRemoved
(removing the card) or - finally - Money (signifying that the User gets the money from
the machine).

CardRemoved

entry/
disp('lnsertCard')

Money'

TakeMoney

entry/
disp(TakeMoney')

CardRemoved

WaitPIN

entry/
dlspfEnterPIN')

PIN/^VerlfyPIN

>
Verification

^
PINVerilied

'
ReturningCard

entry/
disp(TakGCard')

Counting Money

entry/
^ dispt'EnterAmount'

Fig, 1. State machine diagram for ATM

VerifyPlN

V
^1 l\

f

A
VerifyingCarc

\ VerifyingPJN

Idle

Verifying

1 . ^
- ^ ^

- . ^
- ^ ^

/'VVbort

Z /^INVerlfied

>i

Cardlnvalid

CardValid

PINCorrect

Pi N Incorrect

\ H-
J—

. >.

H

Fig. 2. State machine diagram for Bank

www.manaraa.com

264 Jerzy Miescicki

Just for an illustration, assume that we want to model-check the following properties:

- TTi: It is always so that whenever card is inserted then eventually that card is
removed before the cai'd can be inserted anew,

- 7T2: It is always so that whenever card is inserted then eventually money is paid.

We expect, of course, that for the correct system the first requirement should be
evaluated to True, while the latter one should be False.

3 Concurrent State Machines (CSM)

3.1 Definition of CSM

Let AP stand for an universal set of atomic propositions. From these atomic propositions,
constants 0,1, operators ! ,+ ,* (Boolean negation, sum, product, respectively), and
parentheses, we build Boolean formulas, obeying the well-known, conventional syntax
and semantics. Let BJ^ be an universal set of all Boolean formulas. The alphabet of
formula/ (denoted a{f)) is the set of atomic propositions referred to in it^. Notice that
a (l) = a(0) = 0, as actually neither 0 nor 1 refer to any atomic proposition.

Formally, a Concurrent State Machine m is a tuple

m=< N, edges,form, out, TIQ >

where:

- N - finite set of nodes (states of behavior), no € iV is the initial node,
- edges C N X N- set of directed arcs,
- form : edges -+ BT - labeling function, attributing Boolean formulas to edges,
- out : N —> 2^'' - output function, attributing to each node a set of atomic

propositions p G AP that are True for this node,

It is convenient to think of CSM models as of labeled graphs (Fig. 3). Rounded
boxes represent states, initial state is highlighted with a thicker borderline. In upper part
of the box the state name is identified (e.g. Idle, CardOK, Verifying,
InvCard) and below a set of propositions that are True for this state is enumerated
(so-called output set of a given state). Directed edges of the CSM graph define the
next-state relation. Edges are labeled with Boolean formulas rather than with individual
symbols from some input alphabet. We require that a machine has to be complete, i.e.
for any state, the Bolean sum of formulas at outgoing edges equals 1.

In the context of behavior modeling we usually understand the atomic propositions
as the coimnunication symbols (signals, messages etc.) produced by the machine in
a given state as its output and received (or "watched for") as its input. Machine's
output alphabet (denoted Out{m)) is the union of output sets of states. For instance, for
machine from Fig. 3, the output alphabet is:

Out{BankMain) — {PINVerif,verCompl,doVerif,Abort} (1)

^ We require the formulas/ G BT be 'minimar, in a sense that their alphabets are minimal.
So, for instance, 1 is used instead of (a-\-\a), a instead of {a*b + a*\b) etc.

www.manaraa.com

Verification of UML State Diagrams Using Concurrent State Machines 265

f
Ms

1 1

u
1
InvCard

Abort
\«Compl

V

y

)

1 i VerifiPiN j

\ ni

^̂ \. jVerilvPlN|

CardOK '̂

PiNVeriiied
wrCompl

J

'^(PiNVdme'CVdone)'

^ i PINVcfone* CVdone) * (! GardVa!id +! PINCorrect) \^

.

cardValid'PINCorrect)!

j PINVdOTia
^'—T

Vefifyng

ctaVeri*

. -

•iCVdone+IPlNVdanfli
1

J
y

Fig. 3. Example Concurrent State Machine (BankMain)

In the CSM framework it is assumed that the truth value of all propositions from
the output alphabet of the machine are fully determined by the output function of
the (present) state. In other words, we assume that as long as the machine is in state
n e N, all propositions p e out[n) axe. True while all the other ones from machine's
output alphabet (i.e. q G Out{m) — out{n)) are False. This can be represented by the
state output formula (denoted ^{n)) which is True for state n. For instance, for state
InvCard (Fig. 3) - the state output formula is:

(p{InvCard) =\PINVerif * verCompMdoVerif * Abort (2)

as out{InvCard) = {Abort, verCompl}, etc. We say that in state InvCard the machine
'produces' two output symbols: Abort and verCompl, in Verifying - one symbol
(doVerif), while in Idle no output symbol is produced.

Similarly, the input alphabet of machine m (denoted Inp[ni)) is the union of alphabets
of all edge formulas. Any proposition/? e Inp{m), when True, signifies that the symbolp
(signal, message,...) is present in machine's input. For instance, for machine from Fig. 3:

lnp{BankMain) = {VerifyPIN, PINVdone, CVdone, cardValid, PINCorrect} (3)

Notice that it is not required that input and output alphabets have to be disjoint.
The next-state semantics of machine's behavior is as follows. At any instant of time

the machine is in exactly one of its states; initially - in the initial state. In any (present)
state n, machine produces its output symbols (making some atomic propositions True
and the other ones False) and simultaneously evaluates the formulas on the edges
outgoing from n. If a formula is True, then its edge is enabled^. If only one edge is
enabled (deterministic case) - it becomes active. If more than one edge is enabled
then one of them is selected as active. The choice is nondeterministic and fair^. If the

Due to completeness, there is always at least one enabled edge.
Of course, the next-state semantics refers to a single execution of the machine. However, in
the context of model checking, all the edges that are enabled in a given state point out to
reachable states. Thus, the reachability graph of the machine (as well as of the whole system,
se below) contains all the edges which are labeled with non-zero formulas.

www.manaraa.com

266 Jerzy Miescicki

selected active edge («, n') points out to a state n' ^ n (different than the present one)
then the machine executes the transition to n'. Transition is instantaneous (zero time).
Otherwise, i.e. if n' = n - machine remains in n. Notice that formula 1 is always True,
so the edges (n, n') (where n' ^ n) labeled with it represent spontaneous ti-ansitions,
executable regardless of machine's input. Similarly, formula 0 would mean that the
edge is never enabled: such an edge can be simply removed from the graph.

3.2 System of CSM and its product

Now, consider a finite (nonempty) set M of Concurrent State Machines. For any two
machines m,, mj € M, if Out{mi) C\ Inp{mj) ^ 0 then there is a conununication from
m,- to Mj (nii and mj are 'communication partners'). If Inp{mi) D Inp{mj) ^ 0 then the
two machines share the same input. A set M of CSM is a system of CSM, iff either
I M 1= 1 (one-component system) or any m ^M has at least one communication
partner or shares the input with at least one other machine.

The overall output alphabet of system M (denoted OUT{M)) is the union of output
alphabets of all m e M. Similarly, the input alphabet of M (INP{M)) is the union of
input alphabets of all meM. The set difference E{M) = INP(M) - OUT{M) is the
set of atomic propositions which are inputs of machines m £ M but are not produced
inside the system. We assume that these symbols p e E{M) come from an unknown
environment of system M and at any instant of time they can be either True or False^.

The global behavior of a system of CSM is represented by system's reachability
graph RG. The algorithm of obtaining RG has been developed and implemented as one
of modules of COSMA environment [16]. Its idea is as follows. The state of the system is
a vector of states of system components. Algorithm starts from system initial state which
is the vector of initial states of components. In a given system state, system produces
the set union of outputs of components. As the system output alphabet OUT{M) is
known, for any system state n the state output formula if{n) is determined, analogously
as in Eq. 2. From state n, a set of states is hypothetically immediately reachable. The
hypothetical edge that would lead from h to some n' should be labeled with the Boolean
product of ip{n) and the product of appropriate edge formulas of individual system
components. If this product equals 0, then the state (although it was hypothetically
reachable) proves not to be actually reachable and is not included into the emerging
graph. Otherwise, the state is included and the edge with an appropriate labeling
formula is created .̂ The process continues until no new reachable states emerge.

The resulting graph is again a single CSM called a product of machines. The product
is commutative and associative, which supports the compositionality of the model.

The overall organization of the example system from Section 2 is shown in Fig.
4. It consits of two subsystems (ATM and Bank), where ATM is a single CSM
(Fig. 5) and Bank itself is composed from three components: Bank-Main (Fig. 3)

^ Notice that by the above definition the alphabet of propositions coming from the environment
and produced inside M are disjoint.

* It should be emphasized that the propositions p e OUT{M) are eliminated from these
formulas. Indeed, for any system state n the truth value of all output propositions is known so
that we can substitute 0 for propositions that are False in this particular state and 1 otherwise.

www.manaraa.com

Verification of UML State Diagrams Using Concurrent State Machines 267

InsertCard <
Card —>

EnterPIN •«

EnterAmount -«
Amount —>

TakeCard •*
CardRemoved —>
TakeMoney •*

Money —>
Cardlnvaiid <

ATM

VerifyPIN

PIN Verified

Abort

Bank

Main

doVerif

CVdone

cardValid

PINCorrect

Ver-G

Ver-
PIN

«-'

Fig. 4. Structural block diagram of the example system

f
Imam

Cafdmelid

'1
^

.

CartlRemfflsd j

y

®- VerlfiflN

TateMons/

TateMorwy

4 1 CardRemi»Ml | 1̂

RetirningCard

„ 0-

Fig.5. CSM model of ATM

and two orthogonal machines, one for the verification of the card, the other for the
verification of PIN (Fig. 6). Directed arrows in the block diagram from Fig. 4 indicate
the cominunication between machines: for instance, VerifyPIN is the output symbol
from ATM and input proposition for BankMain, etc. These communication relationships
can be easily specified in terms of intersections of input/output alphabets.

Additionally, we prepare the CSM model of expected behavior of the User (not
shown for the sake of the economy of space). It has 10 states and 16 edges and
generally is analogous to the ATM (Fig. 5) to/from which it communicates. The CSM
product of the whole system is a new machine:

System = User ® ATM ® BankMain ® VerC ® VerPIN (4)

It has as few as 28 (reachable) states (out o f l 0 x 9 x 4 x 4 x 4 = 5760 elements
of Cartesian product of sets of components' states) and 46 labeled edges.

www.manaraa.com

268 Jerzy Miescicki

Fig. 6. CSM models of Ver-C (left) and Ver-PIN (right)

3.3 Multi-phase computation of CSM product

Notice that due to the associativity of CSM product, we can obtain the System in
several steps instead of the one ('flat') operation, as in Eq. 4. For instance, we can
compute System as a sequence of partial products:

System = User ® (ATM ig) {BankMain ® VerC ig) VerPIN)),or

Bank = BankMain ® VerC ® VerPIN

ATMandBank = ATM ® Bank

System = User ® ATMandBank

(5)

(6)

(7)

(8)

However, if we know what properties are to be verified, we can significantly reduce
the partial products before they are used in the next step of product computation. In
our example we want to verify the properties 7ri,7r2, specified at the end of Section
2. They refer only to propositions Card, CardRemoved and Money (in the interface
between User and ATM).

Now, suppose that we have just computed the partial product Bank (as in Eq. 6.
Actually, it has 15 states and 32 edges. However, from the viewpoint of the next step
(Eq. 7) the only relevant states are the ones which either produce or receive symbols
to/from ATM, i.e. Verify, PINVerified, Abort (easily identifiable in the block diagram
from Fig. 4). Remaining (irrelevant) states and edges can be merged in order to obtain
compressed, much smaller version of the partial product. The algorithm for partial
product compression (given a set of relevant symbols) has been implemented as a part
of COSMA environment. The result of its application to Bank (or NewBank) is shown
in Fig. v. Notice that NewBank has only 4 states and 7 edges (compared with 15/32
of the 'original' Bank).

The same procedure can be continued with successive subproducts. We substitute
NewBank instead of Bank in Eq. 7, compute ATMandBank, compress again the resulting
product into NewATMandBank (leaving as relevant symbols only these from ATM-User

' The algorithm attributes new, technical identifiers to merged states

www.manaraa.com

Verification of UML State Diagrams Using Concurrent State Machines 269

interface). Finally, we compute and compress (NewSystem = User ® NewATMandBank).
This time, compression involves hiding all propositions except Card, CardRemoved and
Money, (necessary and sufficient) for the evaluation of TTI and 7r2. The result, shown in
Fig. 8, is so elementary that one can analyze it just by naked eye. Indeed, the graph
shows that NewSysteml \= TTI (it is true that whenever Card is inserted then eventually
CardRemoved) while NewSysteml ^ 7T2 (it is not true that whenever Card is inserted
then eventually Money is paid).

Fig. 7. NewBank or compressed product ^{BankMain., VerC, VerPIN}

Fig. 8. NewSystem or compressed product for the evaluation of TTI and TTZ

It should be mentioned that in the case of larger (also: uncompressed) graphs
the verified properties are expressed as formulas in QsCTL (a version of CTL) and
evaluated using one of modules of COSMA environment ([18]), with possible edition
of counterexamples etc.

4 Conversion of UML state diagrams into CSM

The example discussed above shows that the CSM model and COSMA tool is a
noteworthy conceptual framework for behavioral verification of systems. Multi-phase

www.manaraa.com

270 Jerzy Miescicki

product computation and compression of partial products seem to be an important
advantage, as a powerful technique that can overcome (or relax, at least) the exponential
model explosion and provide readable evaluation results. However, if such COSMA-style
model checking has to support MDA approach - we should have algorithms and tools
for converting UML state diagrams into Concurent State Machines. The software
module for converting UML state diagrams (from their XMI specification) into CSM is
now under implementation within the COSMA project. Below, we briefly comment on
main problems encountered during the implementation. Unfortunately, the results of
algorithmic conversion are hardly readable in practice, so that the CSM models of
ATM and Bank discused in preceding sections have been prepared manually, just to
provide illustrative examples highlighting the nature of CSM model.

First of all, CSM are best tailored to modeling of control-dominated systems.
Simple types of data (not only boolean, but also short integers, like counters etc.) are
acceptable, but may significantly increase the size of product. Also, infinite buffers are
excluded and finite ones have to be modeled as separate machines, which may lead to
a substantial complication of the model. Dynamic object creation/destruction also
contradicts the finite-state nature of the CSM model. On the other hand, the same
limitation face practically all finite state methods and model checkers. Moreover, it
should be mentioned that the COSMA environment supports also Extended CSM
(ECSM, [19]), which allow for the definition of all types of variables and attributing
the pieces of C/C++ code to states and transitions of CSM. Of course, systems of
ECSM are no longer model-checkable: they can be either simulated or excuted, but we
can verify their control- and communication flow 'skeletons' before the code is added.

Conversion of "flat" UML diagrams, like the ATM from Fig. 1, is rather a simple
task (compare Fig. 5). However, in CSM the outputs are attributed to states (like in
Moore automata) rather than to transitions (like in Mealy automata and state diagrams),
therefore in order to produce Verify message to Bank the additional CSM state is
introduced {VerReq). The "self-loops" at CSM states (making the conditions of staying
in states explicit) are merely a technical trick.

Composite states (like the AND-state Verifying in Fig. 2) cause more problems.
First, not only the diagram itself (here: BankMain), but also each of nested subdiagrams
(Ver-C and Ver-PIN) must be separate CSM. If so, Ver-C and Ver-PIN have to remain
in some CSM state even though a higher-level diagram (BankMain) had just returned to
Idle. Generally, if the composite state can be entered through H or H* pseudostates,
then upon exit from this (UML) state all the nested machines have to remain "frozen"
in their present (CSM) states. If for the subdiagram the default initial state is specified -
then the same trigger which pulls off the higher-level diagram from (UML) composite
state forces all the nested sub-machines to get back to their initial (CSM) states.
This calls for additional (appropriately labeled) edges in CSMs, from each state back
to the initial one. Moreover, in order to keep the sub-machines frozen while the
higher-level machine is not in "their" composite state, to each composite state a default
technical output symbol is attributed (not provided by the designer at UML level)
which multiplies (in a sense of Boolean product) all the formulas at the transitions
in its sub-machines. This way these transitions are temporarily disabled. It is the
above conventions why algorithmically generated CSM models are hardly readable.

www.manaraa.com

Verification of UML State Diagrams Using Concurrent State Machines 271

Fortunately, the mentioned technical symbols can be easily hidden during compression
and do not influence the readability of final evaluation results.

Among other problems is the conversion of other pseudostates, like Fork - Join
bars as well as junction and branch pseudostates. They involve a specific exchange of
synchronization symbols among sub-machines, but still can be rather naturally modeled
in terms of CSM (see Fig. 3 and 6). Notice that for a subsystem of CSM, aimed to
represent a nested composite state we can compute a local CSM product, as we did e.g.
for Bank (Eq. 6). This operation "flattens" the behavioral specification and helps to
understand the details of cooperation among machines.

The most challenging problem for the COSMA project is now the introduction of
real-time constraints to CSM. In this paper we have used just a basic version of the
CSM model, where the the only representation of the flow of time are states, in which
a machine can nondeterministically remain for an unspecified but finite time (e.g.
CountingMoney in Fig. 5 or VerifyingCard, VerifyingPIN in Fig. 6). The research on the
theory and implementation of Timed CSM is in progress.

References

1. Unified Modeling Language: www.omg.org/technology/documents/formal/uml.htm,
2. B. P. Douglass: Advances in the UML for Real-Time Systems, The Addison-Wesley object

technology series, 2004.
3. B. Berard (ed.) et al.: Systems and Software Verification: Model-Checking Techniques and

Tools, Springer Verlag, 2001,
4. E. M. Clarke, O. Grumberg, D. A. Peled: Model Checking, MIT Press, 2000.
5. SPIN: http://spinroot.com/spin/
6. SMV: http://www-2.cs.cmu.edu/ modelcheck/smv.html
7. FormalCheck: www.cadence.com/datasheets/formalcheck.htmI
8. Uppaal: http://www.uppaal.com/
9. Kronos: http://www-verimag.imag.fr/TEMPORISE/kronos/

10. M. Gallardo, P. Merino, E. Pimentelis: Debugging UML Designs with Model Checking,
Journal of Object Technology, vol. 1, no. 2, July-August 2002, pp. 101-117.

11. J. LiUus and I. Paltor. vUML: A tool for verifying UML models. In Proceedings of 14th
IEEE International Conference on Automated Software Engineering, IEEE Press, 1999.

12. T. Schafer, A. Knapp, S. Merz. Model checking UML state machines and collaborations.
Electronic Notes in Theoretical Computer Science, 55(3), 2001.

13. A. Knapp, S. Merz, Ch. Rauh, Model Checking Timed UML State Machines and
Collaborations, W. Damm and E.-R. Olderog (Eds.): FTRTFT 2002, LNCS 2469, pp.
395-414, Springer-Veriag, 2002.

14. Project Hugo: http://www.pst.informatik.uni-muenchen.de/projekte/hugo/
15. COSMA: www.ii.pw.edu.pl/cosma/
16. J. Miescicki: Concurrent State Machines, the formal framework for model-checkable systems,

ICS Research Report, 5/2003,
17. J. Miescicki, B. Czejdo, W. B. Daszczuk: Multi-phase model checking in the COSMA

environment as a support for the design of pipelined processing. Proc. European Congress on
Computational Methods in Applied Sciences and Engineering ECCOMAS 2004, Jyvaskyla,
Finland, 24-28 July 2004.

18. W. B. Daszczuk: Temporal model checking in the COSMA environment (the operation of
TempoRG program). ICS Research Report, 7/2003, Warszawa, 2003.

19. A. Krystosik: ECSM - Extended Concurrent State Machines. ICS Research Report 2/2003,

www.manaraa.com

Aspect-oriented Response Injection:
an Alternative to Classical Mutation Testing

Bartosz Bogacki, Bartosz Walter

Institute of Computing Science, Poznan University of Technology, Poland
{Bartosz Bogacki, Bartosz.Walter} @cs.put.poznan.pl

Abstract. Due to increasing importance of test cases in software development,
there is a need to verify and assure their quality. Mutation testing is an effective
technique of checking if tests react properly to changes by introducing altera
tions to the original source code. A mutant which survives all test cases indi
cates insufficient or inappropriate testing assertions. The most onerous disad
vantage of this technique is considerable time required to generate, compile
mutants and then execute test cases against each of them. In the paper we pro
pose an aspect-oriented approach to generation and execution of mutants, called
response injection, which excludes the need for separate compilation of every
mutant.

1 Introduction

Along with growing popularity of agile methodologies and open source movement,
unit testing has become one of the core practices in modem software engineering. It is
particularly important in eXtreme Programming [2], which explicitly diminishes the
importance of other artifacts than source code and tests cases. In XP unit test cases
not only, verify if software meets ftmctional requirements, but also enable refactoring,
alleviate comprehension and provide guidance on how the production code should be
used. Therefore, they contribute to many other important practices of XP.

Test-first coding [3] is an example of a practice which employs the test cases in an
infrequently used way. It reverses the traditional order of activities at software devel
opment: the test cases get written prior to the production code and play the role of
formally expressed requirements. System to be implemented is then treated as mere
fulfillment of contracts imposed by tests. Poor quality tests effectively prevent such
system from being successfully completed. Quality is here interpreted as the ability to
discover possible flaws in the production code, which in turn requires the tests to
cover every single piece of the code. The resulting measure, test coverage, is one of
most important indicators assessing test quality. It reflects the percentage of source
code covered by test cases. Low coverage indicates that tests are unlikely to discover
changes or bugs introduced to the production code.

Mutation testing [4] is another technique introduced to verify the quality of the test
suite. Unlike the coverage metrics, which only determine the constructs that are exe
cuted by tests, it figures out how test cases actually react to a faulty response from the
source code. It is based on the assumption that high quality test cases discover any al-

Please use the following formatwhen citing this chapter:

Bogacki, B., Walter, B., 2006, in IFIP International Federation for Information Processing, Volume 227, Software Engi
neering Techniques; Design for Quality, ed K. Sacha, (Boston: Springer), pp. 273-282.

www.manaraa.com

274 Bartosz Bogacki, Bartosz Walter

teration within the source code which makes the code to behave even slightly differ
ently. The erroneous response is most often generated through simple source code
modification. Hence, we use the term mutation and the faulty programs are called mu
tants of the original. Mutant is killed by test cases when it causes them to fail.

Mutation testing is considered an effective method of detecting code uncovered by
test cases. Unfortunately, it has not been widely adopted by the software industry,
mainly due to its high computational complexity and resulting low performance.
Typically, every testing cycle includes multiple phases. First, the code needs to be
analyzed and mutants get created, so that each mutant contains a single modification.
Then every mutant is compiled and presented to all existing test cases, which them
selves are not mutated. The time spent on processing a single mutant is a sum of all
these factors, and then is multiplied by the number of mutants, which in total is quite
complex. Therefore, mutation testing is still practically inapplicable for medium or
large scale systems that comprise large number of tests.

In the paper we present response injection [15] - a novel approach to mutation test
ing, which employs aspect-oriented programming (AOP) [1, 8] to produce and exe
cute mutants. It addresses mainly the complexity, which is the most onerous disad
vantage of traditional mutation testing. Use of aspects removes the need for multiple
compilations, which significantly reduces time required for testing.

In the section 2 of the paper we briefly summarize the status of research on muta
tion testing and present two existing frameworks: Jester and MuJava. Section 3 de
scribes the concept of aspect-oriented mutations, presents its architecture and an ex
ample of use. Results of early evaluation are given in section 4. Finally, in section 5
we provide conclusions and directions for flirther research.

2 Overview of mutation techniques

Mutation testing, introduced in 1977 by Hamlet [4], has been developing for years as
an academic research topic rather than an industry method of testing the tests. There
are two main directions of works: one related to the scope and nature of changes, spe
cifically the mutation operators and their variations, and the other one focused on per
formance improvement. The former one has been driven by the shift in the dominant
paradigm of programming from structural to object-oriented. The efforts related to
performance adhered to three basic rules: do faster, do smarter and do fewer. The first
one targets at faster generating and executing mutants, the second one applies tech
niques of reusing the already acquired information in processing subsequent mutants,
and the latter attempts to limit the number of mutants without loosing information. In
order to preserve mutant's properties, Offutt [13] identified three conditions that it
must satisfy:

1. The reachability condition is that the mutated statement must be reached by a call
fro the test case;

2. The necessity condition is that once the mutated statement is executed, the test
case must cause the mutant program to behave erroneously; the fault that is being
modeled must result in a failure in the program's behavior;

www.manaraa.com

Aspect-oriented Response Injection: an Alternative to Classical Mutation Testing 275

3. The sufficiency condition states that the incorrect state must propagate to tlie call
ing test case and result in a failure.
A high quality mutant is expected to satisfy all these conditions. However, tradi

tional mutation testing techniques often fail in achieving this goal.

2.1 Jester

Jester [6] is an open source, free mutation testing framework for Java developed and
maintained by Ivan Moore. It became widely known in 2001, after the paper on Jester
was presented on XP'2001 conference [12]. A testing cycle in Jester comprises thre
phases: introducing a change to a source file, recompiling that file and running all
tests. The mutation operators available in Jester are defined by user, but their capabili
ties are limited to plain text replacement. Examples include modifying literals, chang
ing "true" to "false" and vice-versa, altering conditionals by replacing "if (" with "if
(true II" or "if(false &&", etc. The important disadvantage of Jester is that it performs
no code analysis, which means it may easily produce equivalent or even invalid mu
tants. It results in lots of errors which require manual analysis and recovery. The criti
cal issue concerning Jester is its poor performance, mainly due to necessity of compil
ing the source code after each mutation is created.

Although Jester may be a an acceptable opportunity for small programs, its appli
cability to larger projects is limited.

2.2 MuJava

MuJava is another mutation testing framework for Java. It has been developed by Ma,
Offutt and Kwon [11] in response to Jester's basic deficiency: performance. MuJava
utiUzes two different methods to mutate programs: MSG for altering code behavior
and bytecode instrumentation for changing program structure. It also employs a wide
range of mutation operators, which allows for performing diverse mutations at differ
ent levels of code composition.

MSG method [14] is based on metamutants, derived from the program under test.
They abstract the pieces of prospective code to be mutated, so that it can be instanti
ated with concrete values during execution. Every instance of metamutant is an ordi
nary mutant, which introduces a single fault. Because metamutants are compiled only
once, they significantly improve the testing performance.

Bytecode manipulation is performed in MuJava with a BCEL, a speciahzed Java
library which facilitates creation and instrumentation of the bytecode inside Java VM.
It is employed to modify the structure of the tested bytecode, e.g. to add a field or a
method to a class, to implement an interface in a class or to change inheritance hierar
chy.

Both mutating techniques operate at low level, which removes the need for altering
source code. The gain in performance of mutant generation and execution comes pri
marily from removal of the recurring compilation phase. Experiments detennined the
speedup of entire testing process to 5.1, while only in mutant generation phase it is
even 9.3 times faster than with Jester [11]. However, we found no experiments com
paring directly MuJava and Jester's performance.

www.manaraa.com

276 Bartosz Bogacki, Bartosz Walter

3 Mutants generator

3.1 Concept of response injection

In traditional model of mutation testing, mutants are generated by small source code
modifications, which preserve program's syntactic correctness. Modifications are in
troduced separately to ensure their effects do not compensate. A mutation can be rec
ognized if it affects the method behavior verified by test cases. The behavior can be
tested either directly, by examination of return value or exception ttoown, or indi
rectly, if it changes the internal state of object. This leads to the conclusion that mu
tants are discovered in one of two ways: either by direct verification of method call
result, or by examination of object attributes. To depict the above, let us consider the
exemplary source code presented in Figure 1 and its test case in Figure 2.

pijblic class Foo {
piablic int bar(int a)

throws IllegalArgumentException {
if ((a > 5) I I (a < D) {

throw new IllegalArgumentException();
}
int c = a;
for (int 1 = 0 ; i < a; i++) {
c *= 10;

}
return c;

.}
}

Fig. 1. Exemplaiy source code under test

public void testBar () {
assertEquals (3000, new Foo() .bar(3));
try {
new Foo 0 .bar(6);
fail ("Exception not thrown for value: 6");

} catch (IllegalArgumentException e) {}
try {
new Foo 0 .bar (0);
fail ("Exception not thrown for value: 0");

} catch (IllegalArgumentException e) {}
}

Fig. 2. Exemplary JUnit test method for method bar() in class Foo

For the above source code (Figure 1) the test (Figure 2) will fail (kill mutant) if the
return value of the call to the method Foo. b a r {) with parameter a equal to 3 will

www.manaraa.com

Aspect-oriented Response Injection: an Alternative to Classical Mutation Testing 277

be different than 3000 or an unexpected exception will occur, or if parameter a equal
to 0 or 6 will not make the method to throw an expected exception. However, no mu
tation will be found if it does not affect the method outcome, for example if the condi
tion i f {(a>5) I I (a < l)) would be replaced with
i f ((a > 5) I ! (a<l) 1 | (a<10)) .

To create mutants sufficiently fast we need a method to non-invasively modify be
havior of selected methods (one at a time), so that it poses a mutated effect on its call
ers without need for re-compilation at every change. This led us to selection of aspect-
oriented programming (AOP) [8, 10].

AOP was originally invented as a response to an inability of object-orientated
paradigm in providing encapsulation of features crosscutting unrelated parts of the
developed system. Aspects allow for grouping such features and applying them to se-
lected Joinpoints - well defined points in program execution. Joinpoints with specifi
cally defined criteria, called pointcuts, once captured, execute associated pieces of
code (called advices) or change the program structure.

In the example (see Figure 2) all calls to Foo. b a r () could be captured on the fly
and their actual results (return value and/or exceptions) were mutated as if the modifi
cation had been introduced directly in the source code. We called this idea response
injection, because the mock method response is injected instead of the actual object.
Exemplary Aspect J implementation is shown in Figure 3.

public aspect FooMutant {
int around 0:

// capture a call to method bar()
// defined outside this aspect
call(public int bar(int))

&& !within (*..*Mutant) {
// and return a mutated value instead
return Integer.MAX_VALUE;

}
}

Fig. 3. Exemplary aspect mutating behavior of method bar()

3.2 Architecture

The proposed system is composed of two collaborating aspects: MutantGenerator and
MutantExecutor.

The first one captures the original flow of the code executed by a test case and is
responsible for mutating the results of the tests method. It takes over the control at
every method call and has a choice of replacing its execution with own code or pro
ceeding with the existing one. In order to better mimic the normal program flow, the
aspect executes each test case twice. During the first pass it captures the information
fi-om the original program flow and generates mutants. During the second pass, it runs
the test once per each mutant and looks if the mutant is killed. Figure 4 depicts the
original program flow with sequence diagram.

www.manaraa.com

278 Bartosz Bogacki, Bartosz Walter

FooTest

testBarO

-4

Foo

bar(3)

lllegaiArgumentException

K

Fig. 4. Sequence diagram for original program flow

As a comparison to the original flow, Figure 5 presents the program flow with Mu-

t a n t G e n e r a t o r aspect.

FooTest MutantGenerator

testBarO]

>l

K--

bar(3)

K--

3000

bar{6)

lllegaiArgumentException

1^-
bar(O)

lllegaiArgumentException
testBarO, ^

^ bar(3)

-2147483648

1^-

K--

'^-

bar(3)

3000

generateMutantsO

bar(6)

lllegaiArgumentException

bar(O)

lllegaiArgumentException

getMutantO

Foo

^

/•Istpass

y

•2nd pass

Fig. 5. Sequence diagram for modified program flow employing MutantGenerator

www.manaraa.com

Aspect-oriented Response Injection: an Alternative to Classical Mutation Testing 279

Each test case must be executed a number of times, once for each mutant. This
leads to introduction of another aspect, Mutan tExecu to r , that wraps the test code
execution. Its responsibiUty is to handle each call to the testing method in test case
and wrap it with subsequent executions of mutants generated by Mutan tGene ra -
t o r . MutantExecutor plays the role of meta-mutant, which includes all mutants for a
given method, but requires only a single compiling. It also intercepts any exceptions,
assures that they do not propagate to the JUnit TestRuimer and instead presents results
of the test case execution. Figure 5 presents the sequence diagram for the testing rou
tine with both M u t a n t G e n e r a t o r and Mutan tExecu to r .

For the prototype implementation we used AspectJ [1, 8, 10] compiler to build
code and tests, and JUnit [7] as a testing library.

Fig. 6. Sequence diagram for modified program flow employing both MutantGenerator and
MutantExecutor

3.3 Mutation example

Currently the prototype uses only simple mutation operators, dealing with changing
primitive types and String objects, yet they seem sufficient to present the idea. For
example for i n t variable of value r e s u l t the mutations include: - r e s u l t , r e -
s u l t + n , r e s u l t - n . Integer.MIN_VALUE, Integer.MAX_VALUE,
and 0, where n is a random integer. The only mutation we cuiTcntly apply to objects
is n u l l value. In future, we plan to introduce more sophisticated mutants for objects
(which could benefit from an on-fly object creation with dynamic proxy).

Considering our exemplary code, for F o o . b a r (3) call, we end up with the fol
lowing mutants: - 3 , 3 + n, 3 - n, -2147483647, 2147483647, 0. All such mutants get
killed by the test case.

www.manaraa.com

280 Bartosz Bogacki, Bartosz Walter

4 Early evaluation results

In order to evaluate the proposed solution, we conducted an experiment with the pro
totype tool. As an object of experiment we selected Commons Lang v2.1 [5] from the
Apache Jakarta Project. Commons Lang features a very good code coverage: it in
cludes over 1250 tests, with 90.9% of conditionals coverage and 91% of statements
coverage. The size of the code measured in NCLOCs (non-commented lines of code)
exceeded 13K.

To setup a context for our evaluation we decided to compare the results with
Jester's. We selected Jester due to its popularity in eXtreme Programming commu
nity. However, Jester deficiencies prevented it from objective and unbiased evalua
tion. A mutation that violates the code syntactic correctness makes Jester hang, which
requires manual fixing. To avoid that the code needs to be carefully tagged, which af
fects the measurement. Therefore, the experiment was meant to show a tendency, not
exact results.

Experiment was perfonned on a PC with Intel Pentium 1.7GHz Centrino with 1GB
of RAM, running Windows XP Professional and Java VM 1.4.2_08.

4.1 Performance

Execution time was measured for Commons Lang test cases. As we were unable to
execute Jester for entire project due to the abovementioned facts, we decided to limit
the experiment to a few selected test suites only. Figure 7 presents the results.

TestSuite
MathlestSuite
BuilderTestSuite
EnumlestSuite (enum)
EnumTestSuite (enurns)
ExceptionTestSuite
MutablelestSuite
TimeTestSuite
AIILangTestSuite

Jester
1532 sec.
782 sec.
82 sec.
85 sec.

278 sec.
58 sec.

2250 sec.
no data

Response
Injection

50 sec.
49 sec.
41 sec.
45 sec.
39 sec.
38 sec.
69 sec.
78 sec.

LOC
4908
6836
921
916

1912
1376
3456

39175

NCLOC
1988
2310

222
225
765
378

1652
13838

Tests #
163
247
63
64
62
49
40

1245

Speedup
30.6

16
2

1.9
7.1
1.5

32.6
approx. 1776

Fig. 7. Summary of generation, compilation and execution times for selected test suites of
Apache Jakarta Commons Lang project

Reducing the scope of the experiment does not significantly affect compilation
time for our prototype, because it still requires compiling entire project with Aspect J.
This introduces a constant timing factor, which is independent from size of the tested
package, while Jester requires a repeated compilation of every mutant.

The results obtained from Jester and the aspect tool cannot be directly compared.;
however, the results allow for drawing some conclusions. Despite of inaccuracies in
measurement, the aspect-oriented response injection tool appeared considerably faster
for all packages that could be compared with Jester. The gain appears higher for lar
ger testing suites, which could suggest that it could be exploited in production envi
ronment.

www.manaraa.com

Aspect-oriented Response Injection: an Alternative to Classical Mutation Testing 281

4.2 Quality

Effective mutation testing benefits not only from performance gain. The other factor
is mutants quality, interpreted as their ability to discover bugs with minimal effort.

Adherence to Offutt's conditions is one of quality measures. Noticeably, the re
sponse injection approach fulfills all of them. Reachability is ensured by the mutants
generation process: mutated statement is always reachable for a test case, because it
was injected in response to a call to the statement in test code. Similarly, the necessity
condition is preserved as well: the mutated code actually behaves incorrectly, because
its response is altered. Sufficiency condition, which requires that a fault is propagated
up to the test case, is satisfied by mutating directly the actual method called by the test
case.

To assess the quality of generated mutants we analyzed classes from
org.apache.jakarta.commons.math package. Jester produced 1136 mutants for that
package, and 189 of them survived the testing phase. We reviewed them manually in
order to assess their applicability in test code improvement. In most cases they have
not been killed because they did not meet some of the Offiitt's conditions (reachabil
ity, necessity or sufficiency).

For tlie same code base the aspect-oriented tool generated 1978 mutated responses.
Test cases indicated that only 3 injected responses did not make any test case to fail.
All of them required more strict assertions to be introduced to the test cases, but did
not violate any of the conditions.

5 Conclusions

The results of initial evaluation of the presented tool show that use of aspects in muta
tion testing appears a promising opportunity. The prototype we built generates the
mutants much faster than popular Jester, while preserving three required properties:
reachability, necessity and sufficiency. The main functional difference is that it trav
erses the existing test cases to learn the code usage, and then evaluates if the tests are
exhaustive enough. Jester, on the other hand, mutates the code independently from
test cases, which allows it for assessing the code coverage. That is the reason why the
quality of mutants generated by the prototype cannot be directly compared to the
Jester's. However, it appears to produce mutants of higher quality by avoiding the re
dundant equivalent mutants. It also, unlike Jester, performs mutation in strict accor
dance with the test coverage.

Use of aspects preserves the production source code intact and also allows for
various mutation operators, changing both behavior and structure of the code under
test.

Further directions of research and development include support for objects, imple
mentation of other mutation operators and a larger scale evaluation.

www.manaraa.com

282 Bartosz Bogacki, Bartosz Walter

Acknowledgements

The work has been supported by the Rector of Poznan University of Technology as a
research grant BW/91-429.

References

1. Aspect! Project HomePage, http://www.eclipse.org/aspectj/ (visited in January 2006)
2. Beck K.: Extreme Programming Explained. Embrace change. Addison-Wesley, 2000.
3. BeckK.: Test-Driven Develoment. By Example. Addison-Wesley, 2003.
4. Hamlet R.G.; Testing programs with the aid of compiler. IEEE Transactions on Software

Engineering, Vol. 3(4), July 1978, pp.279-290
5. Jakarta Commons Lang Project, http://jakarta.apache.org/commons/lang/
6. Jester HomePage, http;//jester.sourceforge.net/ (visited in January 2006)
7. JUnit HomePage, http://wwwjimit.org (visited in January 2006)
8. Kiczales G., Lamping J. et al: Aspect Oriented Programming. In: Proceedings of ECOOP

1997, Lecture Notes in Computer Science 1241, Springer Verlag, pp. 220-242.
9. Kim S., Clark J., McDermid J.; Assessing test set adequacy for object oriented programs us

ing class mutation. In: Proceedings of Symposium on Software Technology (SoST'99),
pages 72-83, Sept. 1999.

10. Laddad R.: Aspect! in Action. Manning Publications, 2003
11. Ma Y., Offutt J., Kwon Y. R.: MuJava. An automated Class Mutation System. In: Software

Testing, Verification and Reliability. June 2005. Vol. 15(2), pp. 97-133.
12. Moore, I.: Jester a Junit test tester. In: Proceedings of the 2nd International Conference on

Extreme Programming and Flexible Processes in Software Engineering, XP2001. Springer
2001.

13. Offutt A. J.: A Practical System for Mutation Testing: Help for the Common Programmer.
Test Conference, 1994. Proceedings., International.

14. Untch R., Offutt A. J., Harrold M. J.: Mutation analysis using program schemata. In: Pro
ceedings of the 1993 International Symposium on Software Testing, and Analysis, pages
139-148, Cambridge MA, June 1993

15. Bogacki B., Walter B.: Evaluation of test code quality with aspect-oriented mutations. In:
Abrahamsson P., Marchesi M., Succi G.: Proceedings of 7th International Conference in
Extreme Programming and Agile Processes in Software Engineering, Oulu (Finland), June
2006, Lecture Notes in Computer Science 4044, Springer Verlag, pp.202-204.

www.manaraa.com

Advanced mutation operators applicable in C#
programs

Anna Derezinska

Institute of Computer Science, Warsaw University of Technology, Nowowiejska 15/19
00-665 Warsaw, Poland

A.Derezinskadi i .pw.edu.pl

Abstract. This paper is devoted to advanced mutation operators for C# source
code. They deal with object-oriented (00 mutations) and other complex fea
tures of the code. They require structural information about a code, unlike the
standard mutations. Applicability of 0 0 operators in C# is compared with those
for other 0 0 languages. Operators for specific featui-es of C# language are also
proposed. The detailed specification of operators can be provided in terms of
pre- and post-conditions of a program transformation. Based on the operators'
specification, the generation of mutated C# programs can be automated.

1 Introduction

Mutation testing is a fault-based testing technique used for evaluating tests and for
meastiring the effectiveness of test cases [11]. Mutations are simple changes inserted
into a source code. They are defined in terms of mutation operators in order to make
the automated testing process. Standard (traditional) mutation operators can be easily
specified for many languages, e.g. an operator replacing an arithmetic operator "+"
with "-". Testing of new features in object-oriented languages require more complex
operators. The changes, introduced by these operators, should be consistent, for in
stance, with the inheritance hierarchy of classes. These operators take into account
information that is non-local to the placement of the change in the source code.

This paper is devoted to advanced mutation operators specialized for C# code.
They can be more dependent on the programming language than the standard muta
tion operators. The known (firom Java [3,7,10] and C++ [4]) object-oriented operators
were revised and adopted for C#. Some of the operators have altered definition or
different scope of application due to different constructs used in the C#. New opera
tors for specific, not only object-oriented, features of C# were also proposed.

Mutation operators were usually defined informally and illustrated by code exam
ples [3,7,10]. It is not sufficient for the precise definition of advanced mutation opera
tors. To make a definition unambiguous an operator can be specified as a program
transformation with pre- and post-conditions. This approach is presented in the paper.
Precise specification of operators allows effectively generating mutated programs (so-
called mutants) that could be successively compiled. The specification and the quality
of selected operators were verified in experiments on functional and unit tests [5,6].

Please use the foUawingformat when citing this chapter:

Derezinska, A., 2006, in IFIP International Federation for Information Processing, Volume 227, Software Engineering
Techniques: Design for Quality, ed. K. Sacha, (Boston: Springer), pp. 283-288.

www.manaraa.com

284 Anna Dereziiiska

2 Object-oriented mutation testing

In object-oriented programs standard mutation can be used for intra-method level
testing. Object oriented languages provide also nevi' constructions that are not tackled
directly by standard mutation operators. The research on the 0 0 mutation was done
mostly on Java programs [1,3,7-10], Mutation of object-oriented features of a UML
class specification and C++ code was studied in [4]. To my best knowledge the only
research on OO mutation in C# was performed by Baudry et al. [2]. They referred to
standard mutation operators, invocation of an exception and only two 0 0 operators.
The 0 0 operators were not studied in detail but announced in their Mutator tool.
Other C# mutation tools (Nester) support so far only the standard mutation operators.

An important issue is determining the quality of mutation operators in order to
choose the best ones to be applied [8]. A good operator should satisfy the following
conditions: (1) reflect typical errors of program developers, (2) generate proper and
non-equivalent mutants, (3) be effective in qualification of tests. An equivalent mu
tant gives for any input exactly the same output as the non-mutated program. The
judgment about the equivalence is very effort-consuming. Some mutation operators
can generate mutants that are killed very easily by any test. Such operators are not
useful in qualification of tests, although they can mimic typical errors of developers.
Although 0 0 operators generate fewer mutants than standard operators [9], we would
like to limit the number of mutants and choose the most appropriate operators for C#.

3 Advanced mutation operators for C#

The comprehensive set of mutation operators for C# language is presented in tab. 1.
The relations for previously defined operators for Java [3,7,10] and/or for C++ [4] are
indicated in the column "Ref. The differences between the applicability of the corre
sponding operators in different languages were examined [5]. Also eight new opera
tors concerning the specific features of C# were defined. Different groups of opera
tors are discussed below. For the brevity reasons, a description and a specification is
given only for two exemplary operators, OPD and lOK.

An informal description of advanced operators is not sufficient for their precise
specification. Therefore, any operator could be specified using pre- and post
conditions of the transformation of program P to a mutant PQI' (i-th mutant after ap
plying operator O on P). The pre- and post-conditions are specified using logical
predicates with quantifiers (exists 3, for all V) and operators (and, not, or, xor, o , =>).
In post-conditions, the elements marked with the apostrophe (eg. x') relate to elements
changed in the mutant Pot- Different features of the elements are defined by Boolean
values using the dot notation. For example:

x.class True \fx is a class
z.override True if z has the modifier override
x.z.method True if z is a method declared in x (or inherited by x)

www.manaraa.com

Advanced mutation operators applicable in C# programs 285

The following expression denotes that 5 is a syntactically and semantically correct
partof instruction/? (is used in/i): s ® p, or equivalently "s" ® p for complex 5.
The full notation of the specification and specifications of operators are given in [5].

Table 1. Advanced mutation operators for C#

Operators
AMC
IHD
IHI
lOD
lOP
lOR
ISK
IPC
PNC
PMD
PPD
PRV
OMR
OMD
OAO
OAN
JTD
JSC
JID
JDC
EOA
HOC
EAM
EMM
MNC
MBC
MCO
MCI
RFI
EHR
EHC
DMC
DM0
DEH
PRM
lOK
OPD
OID
NDC

Access modifier change
Hiding variable deletion
Hiding variable insertion
Overriding method deletion
Overridden method calling position change
Overridden method rename
Base keyword deletion
Explicit call of a parent's constructor deletion
New method call with child class type
Member variable declaration with parent class type
Parameter variable declaration with child class type
Reference assignment with other compatible type
Overloading method contents change
Overloading method deletion
Argument order change
Argument number change
This keyword deletion
Static modifier change
Member variable initialization deletion
C#-supported default constructor create
Reference assignment and content assignment replacement
Reference comparison and content comparison replacement
Accessor method change
Modifier method change
Method name change
Member changed
Member call from another object
Member call from another inherited class, MCR in [2]
Referencing fault insertion
Exception handler removal
Exception handling change
Delegated method change
Delegated method order change
Method delegated for event handhng change
Property replacement with member field
Override keyword substitution
Overriding property deletion
Overriding indexer deletion
Namespace declaration change

Inv
-

-

-

Spec

-
-
-
-
-

-
-

Appl

-

-
-
-

-

-
-
-
-

Ref
[10,7,4]
[10,7]
[10,7]
[10,7]
[10,7]
[10]
[10]
[10]
[10,7]
[10,71
[10,7]
[10,4]
flO]
[10,71
[10,7]
[10,71
[101
[10,7]
[101
rio]
[10,3]
[10,3]
[10,3,4]
[10,3,4]
[3,4]
[41
[41
[4,2]
[21
[7]
[71

Inv - invalid operators (listed for compatibility reasons),
Spec - differences in specification to Java or C++,
Appl - differences in meaning or application scope to Java or C++

www.manaraa.com

286 Anna Derezinska

Several object-oriented inter-class mutation operators can be applied in the similar
way in different languages. These operators refer mainly to usage of classes related
by inlieritance, e. g. PMD, PPD, PRV. Also the operators dealing with incorrect call
ing of methods are language-independent, e. g. MCO, MNC, MBC, MCI.

Some mutation operators are not appropriate for C# programs. This was stated by a
code analysis and experiments [5,6]. These operators (AMC, lOR, EHC) are listed for
compatibility reasons and indicated in the column "Inv" of the Table 1.

Other operators for C# have to be specified in a different way than the correspond
ing operators for C++ or Java (the column "Spec" of the table 1). The specification
has to take into account new features of C#. For example, extended usage of key
words (new - in operators IHD, IHI), keywords newly introduced in C# {override - in
operators lOD, lOP).

Regardless of an operator specification its application can be different in the con
sidered languages (the column "Appl" in table 1). They can have a different meaning,
or the scope of the application can be broader or narrower than that from Java or C++.

The JSC operator for C# deletes the static modifier for any member of a class. The
reverse operation (adding static modifier as in the JSC operator for Java) could be
omitted, because it provides non-compiled code in most cases.

The EOA operator replaces assignment of an object reference pointing to an object
with the clone (duplicate) of this object. It intends to check a possible mismatch of
objects and object references. In C# the overloaded CloneQ method creates an object
duplicate and is defined for many types. The EOA operator can be applied for a class
which has its CloneQ method.

The EOC operator replaces one kind of comparison with another one (= with
EqualsQ or v.v.). In C# the default ObJect.Equals method calls Object.Referen-
ceEquals which results in a reference comparison instead of a value comparison. For
many types Equals method is overloaded to implement value comparison. The user
can overload Equals method and the operator = for own declared types.

Operators EAM and EMM dealing with accessor and modifier methods {get and
set) have a minor significance in C# because a new element -property can be used.

New mutation operators for the specific features of C# were also defined. They are
dealing with delegates, properties, indexers, override modifier and namespaces. Prop
erties are values that can be stored or retrieved of a class using an accessor {get) and a
modifier {set). Properties can be overriding in the similar way as methods do. The
OPD operator deletes a whole definition of a property from the derived class, e. g.:
OPD: Original code Mutated code
public class Figure public class Figure
{ public virtual double Area { public virtual double Area

{ g e t { get
{ return 0;} { return 0;}

} }
} }
public class Square : Figure public class Square : Figure
{ public override double Area { }

{ get
{ return Math.Ar(base. 2); }

}
}

www.manaraa.com

Advanced mutation operators applicable in C# programs 287

The operator forces the usage of the appropriate property from the base class. It
can be applicable only if the class does not inherit from an abstract type, otherwise a
compilation error would be detected because the class does not implement inherited
abstract member. A specification of the OPD operator is given below:

OPD Pre: B^X-class and 3yy.class and y.x.publicjnherited and
and not x.abstract and 3̂ (y.z.property and z.override)

OPD Post: not y'.z'.property

Indexers are used to index a class in the same way as an array. The OID operator
deletes a whole definition of an indexer from the derived class. This operator can be
defined in the similar way as the OPD operator.

In properties the set modifier uses an implicit parameter called value, whose type is
of the property. By convention names of properties begin with capital letter, while
names of fields with a small one. By mistake a property can be called instead of a
field or vice versa. The PRM operator replaces those two names.

Omission of the keyword override in a method declaration is a common mistake of
C# program developers, who have habits from C++ or Java. In C#, special keywords
{override, new) denote override or hide of a method from the base class. The lOK
operator substitutes an override occurrence with the new keyword, or vice versa {new
with override). This substitution cannot be revealed by a compiler.

lOK: Original code Mutated code
public class Figure public class Figure
{ public virtual void Draw() { public virtual void Draw()

{ } { }
} }
public class Square : Figure public class Square : Figure
{ public override void Draw() { public new void DrawO

{ } { }
} }

This mutation will be detected if polymoiphism is used. In the above example an
object of Square can be referenced as a Figure. After mutation a method Draw called
for this object will invoke a method from class Figure instead of class Square.
lOKPre: a^x.class and 3yy.class and y.x.publicjnherited and

3z (x.z.method and (z.override or z.new))
lOK Post: (z.override =*z'.new) and (z.new =*z'.override)

In C# delegates are the object-oriented equivalents of function pointers. However,
unlike fimction pointers, delegates are type-safe and secure. Delegates can be used in
callback and event-handling scenarios. The DMC operator changes a delegated
method into another method visible in this context and taking the same types of pa
rameters. The operator simulates a fault, when a developer used by mistake a differ
ent method as a callback. The DM0 operator changes the order of assigrmient of
delegated methods. The DEH operator changes a method delegated for the event
handling. Simulated fault can be for example caused by misleading of elements dur
ing construction of a GUI. The operators on delegates are extensively studied in [6].

The namespace statement is used in C# to define a new namespace, which encap
sulates the classes. The NDC operator changes a namespace declaration. It is used
only if exists an appropriate declaration of the class in both namespaces.

www.manaraa.com

288 Anna Derezinska

4 Final Remarks

The object-oriented mutation operators adopted for C# programs and other advanced
operators dealing with new programming features were studied. Defining a mutation
operator as a program transformation with pre- and post-conditions allows to give a
precise specification of the operator. It is especially important for complex operators
dealing with structural features of a program. Based on provided specifications of
operators a tool for mutation of C# programs is currently under development.

The application of selected mutation operators for C# was evaluated in experi
ments. They allowed verifying the specifications, comparing usefulness of operators
and suitability for the test selection. The sets of functional tests and unit tests were
used [5,6]. The preliminary results showed that object-oriented operators IHD, IHI,
lOD, lOP, lOK, OPD and OMD generated proper, non-equivalent mutants and were
selective in assessment of the quality of functional tests. Mutants generated by the
PRM operator were non-equivalent but killed by all functional tests. Among the op
erators dealing with exception handling and delegates two operators EHR and DMC
were the most promising ones. The evaluation of mutation operators for C# and com
parison with other testing criteria needs still further experiments.

Acknowledgment This work was supported by the Polish State Committee for Scien
tific Research under the project 4 T 11 C 04925.

References

1. Alexander, R. T., Bieman, J. M., Ghosh, J. M., Bixia, J.: Mutation of Java objects, Proc of
IS* Int. Symp. on Software Reliability Eng., (2002) 341-351

2. Baudry, B., Fleurey, F., Jezequel, J-M., Traon, Y. Le.: From genetic to bacteriological
algorithms for mutation-based testing, Sof. Testing Verif. and Reliab., vol 15, no 2, (2005)

3. Chevalley, P.: Applying mutation analysis for object-oriented programs using a reflective
approach, Proc of 8-th Asia-Pacific Softw. Engin. Conf, ASPEC (2001) 267-270

4. Derezinska, A.: Object-oriented mutation to assess the quality of tests, Proc. of 29* Eu-
romicro Conf, Belek, Turkey, 1-6 Sept. 2003, IEEE Comp. Soc. (2003) 417-420

5. Derezinska, A.: Specification of mutation operators specialized for C# code, ICS Res.
Raport 2/05 WUT (2005)

6. Derezinska, A.; Quality assessment of mutation operators dedicated for C# programs, ac
cepted for Inter. Conf on Quality Software, QSIC06, Beijing, China, Oct. (2006)

7. Kim, S., Clark, J., McDermid J. A.: Class Mutation: mutation testing for object-oriented
programs, Proc of Conf on Object-Oriented Soft. Systems, Erfurt, Germany, Oct. (2000)

8. Kim, S., Clark, J., McDermid J. A.: Investigating the effectiveness of 0 0 testing strategies
with the mutation method, J. of Soft. Testing, Verif, and Rel., 11(4) (2001) 207-225

9. Ma, Y-S., Offiitt, J., Kwon, Y-R.: MuJava: an automated class mutation system, Softw.
Testing, Verif and Reliab., vol 15, no 2, June (2005)

10. Ma, Y-S., Kwon, Y-R., Offlitt, J.: Inter-class mutation operators for Java, Proc. of Inter.
Symp. on Software Reliability Engin., ISSRE'02, IEEE Computer Soc, (2002)

ll.Voas, J.M., McGraw, G.: Software fault injection, Inoculating programs against errors,
John Wiley & sons Inc. (1998)

www.manaraa.com

An Open Platform of Data Quality Monitoring
for ERP Information Systems

Pawei Sieniawski^ and Bogdan TrawiAskî

Wroclaw University of Technology, Institute of Applied Informatics
Wybrzeze S. Wyspianskiego 27, 50-370 Wroclaw, Poland

'•p.sieniawskiOcolumb-technologies.com, t̂rawinski@pwr.wroc.pl

Abstract. In the paper an Open Platform of Data Quality Monitoring developed
to audit data maintained in any enterprise resource planning (ERP) system is
presented. Data quality of a database is verified according to a control schema
defined in XML. Elementary tests can be developed using external test library
written in .NET code embedded in XML and therefore can be easily incorporated
into the Platform. Openness of the Platform makes it possible to use complex
control techniques without the necessity to introduce any specific meta language.
In order to evaluate the Platform tests for six different ERP systems were carried
out using several data quality metrics. Results of the investigation proved the
usefulness and flexibility of the Platform.

Key words: Data quality monitoring, data quality metrics, ERP information
systems, problem intensity charts

1 Introduction

Computer viruses caused total loss of about 55 milliard dollars in 2003, according to
the Trend Micro's study. However, yearly loss resulting from a low quality of data
is estimated to 611 milliard dollars for USA companies [11]. Nevertheless, most of
investments aim at the protection against outer attacks and the protection of data
possessed against inner erosion is rather marginal. Data quality examination is usually
carried out only when the secondary usage is attempted, for example during the
construction of a corporate data warehouse [3,6]. After completing their projects only
20 per cent of companies continue regular data quality monitoring [12]. Most often the
process of data quality monitoring is the introductory part of a more general process of
data quality improvement [1]. It is focused on the analysis of defect occurrence in
order to remove them automatically. Human verification and approval is needed to
solve many problems [3], thus it is suggested to distinguish clearly both processes. At
present, the definitions of good quality data focus mainly on its consumers and its use
[2,9,8,11], and they often take the form of the question to what extent data satisfy the
requirements of their intended use. There are some different approaches to determine
metrics of the quality of data sets, e.g. local metrics [6], goal metrics [7] and generic
metrics [8] and others are proposed. The construction of the Open Platform of Data
Quality Monitoring presented in the paper differentiates from some solutions proposed
in [4,5,6], because no specific language to define data correctness has been developed.

Please Hse the following format when citing this chapter:

Sieniawski, P., Trawinski, B., 2006, in IFIP International Federation for Information Processing, Volume 227, Soitware
Engineering Techniques: Design for Quality, ed. K. Sacha, (Boston: Springer), pp. 289-299.

www.manaraa.com

290 Pawei Sieniawski, Bogdan Trawiriski

It has been assumed to use commonly known programming languages to detect errors
in data, e.g. those included in the Microsoft .NET environment. The methodology
developed incorporates the best aspects of theoretical models [6,8,9] extending them
of the analyses at the strategic level. The investigation conducted by means of the
Platform on six different enterprise resource planning systems made it possible to
evaluate the solution proposed, to indicate significant features of different metrics and
to assess some aspects influencing quaUty of data in the systems of this kind.

2 Features of the Monitoring Platform

The Open Platform of Data Quality Monitoring (OPDQM) has been developed to audit
data gathered in any enterprise resource planning (ERP) system. It enables to obtain
detailed lists of errors found in data, visualize the results in form of different graphs
and to present general output calculated using several data quality metrics.

Platform ERP System

/ " „

V

External elementary
est definitions

(XML)

ERP System
database control
schema (XML)

Database Quality
Audit Engine

Metrics
Calculation

Module

T

ERP System
Database

Visualization
Module

User Interface

Fig. 1. The architecture of the OPDQM Platform

2.1 Architecture of the Platform.

Data quality of any database is verified using a control schema defined in XML.
The database being verified can be deployed on any known database management
system, only adequate ODBC or OLE DB drivers are required. Elementary test sets can
be written in .NET code embedded in XML and easily incorporated into external
test library. The architecture of the OPDQM platform is shown in Fig. 1. The main
component of the platform is the Audit Engine, which executes elementary tests. The
results of tests are passed directly to user interface in the form of list of errors found
and to modules responsible for metrics calculation and visualization. The library of

www.manaraa.com

An Open Platform of Data Quality Monitoring for ERP Information Systems 291

elementary tests can be extended by external tests in a form of source code to be
compiled and incorporated as an integral part of the platform during its operation.

2.2 Uniform error messages

A unified way of error messaging has been designed in the OPDQM platform. Each
elementary test can return any number of uniform data error messages. However, testing
a single row or single field return usually no more than one message per one test run.
Information contained in an error message is presented in Table 1.

Tab. 1. The structure of an error message

Element
Type

Localization

Test instance name
Message
Confidence

Repair cost

Operator

Time

Values
critical, warning, informa
tion, external
structure pointing out a
table, record or field in a
database
text
text
number from the interval
[0,1]
number

identifier

datatime

Description
Determines error importance, points out also
errors occurring out of the system (external)
Contains information of the nearest error oc
currence place possible to be localized

Test instance name assigned in control schema.
Error message returned by testing function
Determines the probability of error occurrence

Repair cost expressed in currency, effort or
other form, determined in test schema
Determines ERP system operator responsible
for faultiness.
Data and time of performing a test

2.3 Presentation of test results

The simplest form of presentation are tables containing all error messages obtained
during test runs (Fig. 2). In order to assure effective use of the results achieved the
sorting, filtering, selecting and colouring functions are provided. It is also possible to
export messages in XML format. The other way of presenting quality of data are
graphs showing the values of different metrics. They are calculated on the basis of
error messages or received directly from a database tested.

• Tjipe

Critical

Ditical

, Critical

Critical

Critical

' LocalEation

. AestData/Customers...

AestD ata/Customers...

, /testData/Custorners...

1 /testD ata/Customers...

1 AestD ata/Customers...

Instance name

Region_exists

NIP_exists

NIP_exist3

NIP_numberValid

Region_exists

1 Message

Field can't be emptyl

' Field can't be emptjil

'. Field can't be empty!

lvalue n26-00-29-70...

1 Field can't be emptyl

Cost

5

10

10

20

5

Confidence

1

1

1

1

1

Fig. 2. Error messages in the form of a table

Very useful form of presentation are problem intensity charts which have been
designed to visualize errors detected in a single table. In the problem intensity chart the

www.manaraa.com

292 Pawel Sieniawski, Bogdan Trawinski

X axis represents records of a table tested and the y axis its columns. A vertical bar
stands for a problem detected and the intensity of colours corresponds to the number of
problems occurring in a given place, i.e. in a column of a given table row. In turn, the
spaces (blank places) indicate records without any error. An example of a problem
intensity chart is shown in Fig. 3. The intensity of colours may alternatively denote the
costs of removing errors or the severity of problems.

records

gl I
i ilii:

.L..„.„Liizz:: '! IF
Fig. 3. An example of a problem intensity chart

3 Overview of metrics implemented in the Platform

Managers need aggregate information on quality of data gathered in an ERP system in
order to be able to take a decision about repair activities. The data quality metrics seem
to be the most appropriate means to provide such information. According to the rules of
a good metrics [10] they are characterized using such features as readability, complexity,
ability to compare different databases and mobilization of the management to undertake
repair activities. So far, twelve following metrics have been implemented in the Platform.
Beneath the following denotation is used: E is the set of all error messages, T is the set
of all elementary test runs, R is the set of records tested, i? <— £? is a set of all records
referenced by at least one error message, F is the set of fields tested, F <— E is a
set of all fields referenced by at least one error message. In turn, card{E), card{T),
card{R), card{R <— E), card(F <—• E) are the cardinalities of these sets respectively.

(1) Number of errors. It is the total number of errors detected in a database which
can be expressed by the following formula:

DQME = card{E) (1)

(2) Percentage of errors detected in tests performed. It is the ratio of the number
of errors detected in a database to the number of all tests performed, expressed by the
following formula:

cara{J)
(2)

(3) Number of errors per 1000 records. It is equal to the number of errors
detected falling on 1000 records tested and is expressed as:

DQME/R/1000
card{E)
rnrdi Ti\ *1000 (3)

www.manaraa.com

An Open Platform of Data Quality Monitoring for ERP Information Systems 293

(4) Number of invalid records. It is the number of records where at least one
error was detected and is equal to the number of records referenced by at least one
error message. It can be expressed by the following formula:

DQMR^B = card{R *- E) (4)

(5) Percentage of invalid records in records tested. It is the ratio of the number
of records where at least one error was detected to the number of all records tested,
expressed by the following formula:

cardjR *~ E)
card{R)

DQMR^E/R = :::Z^ * 100% (S)

(6) Number of invalid records per 1000 records. It is equal to the number of
records where at least one error was detected falHng on 1000 records tested, expressed as:

(7) Number of invalid iields. It is the number of fields where at least one error

was detected and is equal to the number of fields referenced by at least one error

message. It can be expressed by the following formula;

DQMF^E = card{F <- E) (7)

(8) Percentage of invalid fields in fields tested. It is the ratio of the number of
fields where at least one error was detected to the number of all fields tested, expressed
by the following formula:

DQMp^E/F = ""'^^(-^;~-^) * 100% (8)

(9) Number of invalid fields per 1000 records. It is equal to the number of fields
where at least one error was detected falling on 1000 records tested, expressed as:

i'QivW,„,.o„„ = " - f ^ y . i o o o (9)

(10) Weighted average of percentage of errors, invalid records and invalid
fields. It is the weighted average of three metrics (2), (5), (7). This hybrid metrics is
expressed as follows:

_ wi * DQME/T + W2 * DQMR^E/R + W'i* DQMp^E/F
ULJIVlyjav — , , \tUj

Wi +W2 + Ws

The above weights were determined experimentally and during tests were assigned the
following values: wi — 0.5, W2 — 0.3 and W3 = 0.2.

www.manaraa.com

294 Pawet Sieniawski, Bogdan Trawiriski

(11) Cost of database repair. Expressed in terms of money or effort which should
be expended in order to remove all errors from the database. The value of the metrics
equals to the sum of repair costs assigned to errors detected:

epX'^i (11)

where Crep{ei) is the cost of repair of i-th error detected.
(12) Database depreciation. It is the ratio of the cost of database repair to the

total value of database, expressed by the following formula:

DQMr,
EK-ec(ri)

* 100% (12)

where Vredrj) is the value of j-th record in the database.

4 Data preparation for tests

The investigation has been carried out using data taken from six ERP systems exploited
in medium size companies functioning on the market of the FMCGs. The systems
under study ranged from single systems developed by order to the brand ones delivered
by world leading producers. The characteristics of data used during tests are presented
in Table 2, where the names of systems have been anonymized. In order to assure
comparabiKty of the results, a small fragment of data was chosen for tests. It was the
table of clients which can be found in each system. In order to simplify the verification,
only the rows containing data of companies located in Poland were taken into account.

Tab. 2. Characteristics of data used in the investigation

ERP System
denotation

System 1
System 2
System 3
System 4
System 5
System 6

ERP System
origin

local
local
local

foreign
foreign
local

Number of
records to test

1626
5102
6057
613
1417
2228

Year of data
origin

2006
2005
2005
2004
2004
2006

ISO quality
standard

introduced

+

+
+

The hst of elementary tests applied is presented in Table 3. The basic value of each
record tested with correct data was assumed as equal to 100. This value could be
increased by 5 when optional fields such as Phone or E-mail, were filled. For evaluation
of error repair costs artificial unit of DQ$ was assumed.

5 Results of the investigation

5.1 Comparison of metrics

The results of database quality monitoring using different metrics are shown in Fig. 4.
The metrics Id conform the denotation used in chapter 3. Left part of the Fig. 4 (a)

www.manaraa.com

An Open Platform of Data Quality Monitoring for ERP Information Systems 295

Tab. 3. Elementary test applied
Field scope

Name

Adi-ess

City

Region
Country

ZIP

TIN

Phone

E-mail
Row/table
scope
Row

Table

Elementary test

Check if not null
Check correctness
Check unique identity (min. length 6 characters)
Check unique name
Check if not null
Check if not null
Check if present in the list of 10 thousand of Polish towns
and villages
Check if not null
Check if takes one of three values: Polska, PL, Poland
Check if not null
Check the mask of Polish ZIP code (xx-xxx)
Check if not null
Check the mask of Polish tax identification number.
Check if control sum conforms with Luhn's algorithm
Check length (min. 7 digits)
Check the mask of local, intercity, international or cell number
Check the conformity with e-mail address standard
Elementary test

Check the conformity of ZIP code with town and province
using external data source
Detect duplicates using Levenshtein's distance calculated on
the basis of name and tax id with threshold value of 96%

Error repair cost
[DQ$]

20
2
5

20
10
5
5

5
5
10
10
10
5

20
10
5
5

Error repair cost
[DQ$]

5

20

comprises the comparison of percentage scale metrics. All the metrics, beside the
database depreciation (no. 12), range the data quality of the systems tested in the same
order, what means that the system 1 contains the best data. It could be also observed
that the metrics of percentage of invalid records (no. 5) is much more sensitive to
error occurrence than others. It reaches values about 5 times higher than other metrics
and perhaps therefore is the most frequently mentioned in the publications in the
field [13], Moreover, it is the only metrics differentiating the significance of errors
detected. Further analysis of data in the system 5 revealed that its database contained
considerable number of duphcates, what led to the high cost of repair. Right part of the
Fig. 4 (b) comprises the results of the tests performed using the linear scale metrics.
These metrics cannot serve the comparison of different databases, however they are a
good starting point to the estimation of the cost or effort of database repair.

5.2 Comparison of data quality in ERP systems

There are many factors having impact on data quality in an ERP system. The most
important are the quality of a system application, the history of data migration,
corporate standards and regulations, organizational culture and first of all its users and
administrators. Data monitoring results are given in Fig. 5. The relatively high quaUty
of data in the system 1 is the consequence of reach prompt and control mechanisms
available in the process of data input.

www.manaraa.com

296 Pawe{ Sieniawski, Bogdan TrawMski

a) Percentage scale mettles b) Lin ear scale metrics

—•—Sys1 —»—Sys2

-^*— S!?s4 - * — Sys5

7000-

-Sys3

-SysB

Fig. 4. Results of tests performed using different data quality metrics

a) Percentage scale metrics

100%

-12

b) Metrics per 1000 records

2500 •

2000-

Sysl Sys2 Sys3 Sys4 Sys5 Sys6

Systems tested

1500 -

1000

500

0
Sysl Sys2 Sys3 Sys4 Sys5 SysB

Syste rre tested

Fig. 5. Results of data quality monitoring of six ERP systems

An attempt to verify the hypothesis that the ISO quality standard introduced by the
corporation influences positively the data quality is shown in Fig. 6 a). However it does
not result in data quality worsening, but in practice has no effect. It turned out that the
ISO quality standard does not cover the issue of the quality of corporate databases. The
correlation between the ERP system origin and the data quality is presented in Fig.
6 b). The results obtained suggest that local systems, produced by Polish software
companies, are equipped with more effective and better localized control tools. For
example the tax identification number differs in each country in its length, format and
the method of control digit calculation.

Problem intensity charts for six ERP systems are presented in Fig. 7-12. The order
of records shown in charts conforms the sequence of their input into each system.

www.manaraa.com

An Open Platform of Data Quality Monitoring for ERP Information Systems 297

a) Data Quality \s ISO Standard

-Companies with ISO

• Companies without ISO
100% -|

90% •

80% •

70% •

60% •

50% •

40% .

30% •

20% H

10% -

0% -

— ̂ —
1

/

- -- /
' / ''

,.̂ / /'
- / / -

b)Data Quality vs Origin ofERPS^j^tem

—i—Loca l S!P System

---©•--•Foreign ffiPSystem

100%

90% •

80% •

70% -

60% •

50% •

40%

30%

20%

10%

0%
12

MelitCi Id

12
UeWcs Id

Fig. 6. The impact of external factors analysis on data quality

In the chart of the System 2 (Fig. 8) a series of records with two errors occurring
simultaneously could be observed. Probably those records were imported form a
previous ERP system and were not adjusted to the requirements of the new one.

In the chart for the System 4 a group of records of low quality could be observed,
which significantly decrease quality of a whole database. However, there is a series of
records of comparable size without any error in this system too. In the system 6 the
field of Region was used inappropriately to its assumed purpose to place there different
data for which there were no especially dedicated fields.

The problem intensity charts may turn out to be useful for detecting repeatable
errors which can be limited at the level of ERP system applications eg. in the case of
the systems 4, 5 and 6.

Fig. 7. Problem intensity chart for System 1

6 Conclusions and future work

The Open Platform of Data Quality Monitoring has been proved to be useful to
monitor data quahty of ERP systems, but it could be also used to audit other classes of
information systems based on relational databases. The openness of the Platform makes
it possible to use complex control techniques without the necessity to introduce a

www.manaraa.com

298 Pawel Sieniawski, Bogdan Trawinski

II 111 Hill II

V 'I'liiami
(III I I Jill' 1 I IMIÎ

111 fiiii i i i i i i iniMniii i r n i IIIII iiiiii

h ! HI

I i «IIW : j : l IP
I II I

[111 I N
[I iilliii in.ji 11

Fig. 8. Problem intensity cliart for System 2

1 , ' " 1 i 1 ' "i i. ,1 ,1 i ' I ' l ' i
1 I I 1 1 1 ' 1 III 11 j i i 1 III

'^ii'v/'^iiiinTrwi'ifflirMii'^i

1 1 1 • 1

nil! iif'l

| i | i i | | , | | i , | i i

III
i'li Ii i IM!

i'''i

'iiii

Mill

Fig. 9. Problem intensity chart for System 3

N 1'

II Will 11

kiytiril

1 1 1 i ! i -I ht I'tliMI 1 ' 1

, lilt i;ii liiiBi:i gfjjiifflii, »ifii«!iiilasii«aw i: Ii nmr i i 'li'iPl i i Mi t

' iW«»^i.piMlli|llll [IIIIII 1 ll'ii'illMI IJiii'iiIfii iii'i

Fig. 10. Problem intensity chart for System 4

specific meta language to define data correctness. Therefore this enables to implement
the Platform in fast and flexible way and achieve an acceptable level of performance.

The metrics applied in the Platform can be classified into two groups. First group
comprises metrics useful to compare the data quality of difl'erent databases or parts
of the same database as well as to trace the effectiveness of activities undertaken to
ameliorate the quality of corporate data. These are percentage scale metrics and metrics
calculated per 1000 records. In turn the second group constitute linear scale metrics
which can be used to estimate effort and costs of database repair. Both groups are very
important tools of data quality management.

The problem intensity charts turned out to be a usable method of visualizing the
results of data monitoring. They allow to identify groups of repeatable problems
occurring in data and in consequence they may contribute to the improvement of the
process of collecting data.

The investigations showed also that the ERP systems developed in Poland are
customized better to local regulations and standards and therefore can achieve higher
quality of their databases. Moreover, the introduction of the ISO quality standard does
not have practically any impact on quality of data collected by the corporation.

www.manaraa.com

An Open Platform of Data Quality Monitoring for ERP Information Systems 299

I Hl^lllllilll lllllil

I M " V

iMmfimmmAM iiii iiiiiiii I 111 iiiiiir III i r n iiii 11 iiiii iii ,111111 u mi 11 iiii iim 1
ji iii!iiiiiBii?i''iiiii i i i l b i r i ' i i iii'i il Mil i lM;il i l i l i i l lspfi j i) l ittl'illi 13 si i f liftliiMir»iK

' H M W

IIII 111| llil, |iiii|U III, l!!||lll|i II

III!

ll'i I ill

Fig. 11. Problem intensity cliart for System 5

fl'illr' "ii ',!,,,,, ^ I ll„l'^ '1 «l
WimS «s!ji«HI3»l?&»/>

Ittlllll iiii'iiiiiiittiiyifciiii lillll IJ lllllil llW il lyiiiiiii iiiiiiiiiiiii

Fig. 12. Problem intensity chart for System 6

References

1. Data Monitoring: Taking Control of Your Information Assets, DataFlux Corp., (2004)
2. Defining and Measuring Traffic Data Quality, Office of Policy Federal Highway Administration,

(2002)
3. English L.: Improving Data Warehouse and Business Information Quality. Wiley (1999)
4. Galhardas H., Florescu D., Shasha D., Simon E.: An Extensible Framework for Data Cleaning.

ICDE 2000 poster paper, San Diego (2000)
5. Galhardas H., Florescu D., Shasha D., Simon E. and Saita C: Declarative Data Cleaning:

Language, Model and Algorithms, VLDB 2001, Rome (2001)
6. Jarke M,, Jeusfeld M., Quix C.,: Design and Analysis of Quality Information for Data

Warehouses. Proceedings of the 17th Internat. Conf. on Conceptual Modeling (ER'98),
Singapore (1998)

7. Kovac R„ Lee Y. W., Pipino L. L.: Total Data Quality Management: The Case of IRI. The
1997 Conference on Information Quality, Cambridge (1997)

8. Lee Y. W., Pipino L. L., Wang R. Y.: Data Quality Assessment. Communications of the
ACM, (April 2002) 211-218

9. Lee Y. W., Strong D. M., Wang R. Y.: Data Quality In Context. Communications of the
ACM, (May 1997) 103-110

10. Loshin D.: Developing Information Quality Metrics. DM Review Magazine, (May 2005)
11. Olsen J. E.: Data Quality: The Accuracy Dimension. Morgan Kaufmann Publishers, (2003)
12. Zellner G., Helfert M., Sousa C : Data Quality Problems and Proactive Data Quality

Management in Data-Warehouse-Systems. Proceedings of BITWorld, (2002)
13. Loshin D.: Developing Information Quality Metrics. DM Review Magazine, (May 2005)

www.manaraa.com

Managing Data from Heterogeneous Data Sources
Using Knowledge Layer

Krzysztof Goczyla, Teresa Zawadzka, Michal Zawadzki

Gdansk University of Technology, Department of Software Engineering,
ul. Gabriela Nanitowicza 11/12, 80-952 Gdansk, Poland

{kris,tegra,michawa}@eti.pg.gda.pl

Abstract. In the process of data integration using ontologies it is important to
manage data from external data sources in the same way as data stored in the
Knowledge Base. In previous papers [1], [2] the way of inference from data
stored in the Knowledge Base, using Knowledge Cartography idea has been
presented. However, this solution requires loading all data to the Knowledge
Base. The solution presented in this paper shows how the Knowledge
Cartography can be used to infer from data stored in external data sources,
without loading them to the iCnowledge Base. The presented solution is to
enrich each data source with an additional layer that allows managing data
using signatures. The paper additionally describes the results of tests comparing
times of inference when data are loaded to the Knowledge Base and when data
are fetched on demand.

1 Introduction

Managing data from heterogeneous data sources using ontologies is a key problem
that must be resolved to integrate data [3] [4] and to allow inferring from them. This
problem has appeared even more important while the Internet grows larger and more
popular. To achieve the aim of data integration, the Semantic Web [5] initiative has
been proposed. Within this initiative the OWL [6] language has been standardized.
These achievements have been a large step to data integration, however does not
resolve all problems.

In the paper we propose that data coming from external data sources (e.g. from
web sites) can be integrated with a Knowledge Base (KB) in such a way that logically
the data sources become a integral part of the Knowledge Base. From the KB point of
view, they comply with the ontology stored in the KJB. In our approach, the ontology
is formulated in terms of OWL-DL and managed using the Knowledge Cartography -
a (presented elsewhere [1], [2]) set of algorithms for processing Description Logics
ontologies.

The paper is organized as follows: Section 2 briefly recalls the idea of Knowledge
Cartography and describes motivations behind our work. The rest of the paper
presents the main contribution of this paper - the Knowledge Layer solution.. The
architecture of BCnowledge Layer is described in Section 3. The next two sections:
Section 4 and Section 5 describe specific solutions applied in JCnowledge Layer.

Phase use the following formatM'hen citing this chapter:

Goczyia, K., Zawadzka, T., Zawadzki, M., 2006, in IFIP International Federation for Information Processing, Volume 227,
Software Engineering Techniques: Design for Quality, ed. K. Sacha, (Boston: Springer), pp. 301-312.

www.manaraa.com

302 Krzysztof Goczyla, Teresa Zmvadzka, Michal Zawadzki

In Section 6 the results of efficiency tests comparing times of answering to the queries
when data are loaded to the Knowledge Base and when data are fetched on demand
from external data sources. Section 7 summarizes the paper.

2 Motivations

The idea of Knowledge Layer appears as a response for the requirement of fetching
data from external data sources on demand. The solution applied in KaSeA system [1]
requires inserting all data from data sources to the Knowledge Base. We can say that
in the KaSeA system there are two main components. The first component -
the Inference Engine - is responsible for inferring knowledge on the basis
of infomiation stored in the Knowledg Base. Two kinds of information are loaded
to the Knowledge Base: terminology and assertions about individuals.

Following the idea of Knowledge Cartography, each concept has a signature.
A signature is an array of binary digits representing a region covered by the concept
in the map. A map of concepts is basically a description of interrelationships between
concepts in a terminology. The map is created in the course of Knowledge Base
creation. A map of concepts can be graphically represented in a form similar to
a Venn diagram (see Figure 1).

AnB = .

CCB

Signatures;
1 2 3 4 5 6 7 S

A 01111000
B 00110110
C 00011011
D 01111110
E 10110001

Signatures:
1 2 3 4

A 0100
B 0011
C 0001
D 0111
E 1000

Fig. 1. A map of 5 concepts (a), with two terminological axioms added (b)

Each atomic region (i.e. a region that does not contain any other region) represents
a unique valid intersection of base concepts. By vahd we mean an intersection that is
satisfiable with respect to a given terminology. Intersections of concepts that are not
allowed by terminological axioms are excluded from the map. A number of valid
atomic regions n is calculated and each atomic region has assigned a subsequent
integer number from the range [1, «]. Because any region in the map consists of some
number of atomic regions it can be represented by an array of binary digits of length n
with "l"s in positions mapped to contained atomic regions and "0"s elsewhere. In this
way we achieve a signature and in terms of signatures we can describe any
combination of complement, union and intersection of described concepts by simply
mapping these operations to Boolean negation, disjunction and conjunction.

www.manaraa.com

Managing Data from Heterogeneous Data Sources Using Knowledge Layer 303

Analogically, during loading assertions about individuals, signatures for
individuals are specified. The difference between the signature of a concept and
the signature of an individual is the way how "l"s at specified positions of signatures
are interpreted. In case of an individual, " 1 " means that the individual can belong
to the corresponding atomic region. Also instances of roles are stored
in the Knowledge Base. The process of inference is based on comparing signatures.
For example, when we ask about all instances of the specified concept, the process
of answering this query is reduced to the problem of finding these individuals whose
which signatures are subsumed by the signature of the specified concept (signature Si
is subsumed by the signature si when each bit of signature s\ is less than or equal to
the corresponding bit in the signature 52)-

The solution applied in the KaSeA system has one indisputable advantage - all
conclusions about data can be quickly retrieved. However, it has also many
disadvantages:

- the process of loading data into Knowledge Base is time consuming,
- there are needed advanced techniques to update data loaded to the Knowledge Base

of KaSeA system,
- KaSeA system must observe a data source to react for changes or a data source

must notify KaSeA system that update must be carried out,
- the solution is not easily scalable: it is not possible to manage all data from

external data sources just by loading them to the BCnowledge Base.

In the case of systems which manage few data sources which are actually rarely
updated the presented solution can be sufficient. However, for systems which manage
numerous data sources which change very often the other way of retrieving data must
be developed. The answer for this need is the Knowledge Layer.

3 Knowledge Layer Architecture

The main assumption of Knowledge Layer is the fact that the BCnowledge Layer can
be queried analogically as KaSeA system (e.g by DIGUT - Description Logic
Interface by Gdansk University of Technology [8]). And, what is even more
important, the inference capabilities are the same as inference capabilities of KaSeA
system. This is caused by the fact that both KaSeA and Knowledge Layer use
Cartographic Representation of knowledge.

Within Knowledge Layer we can distinguish a set of components depicted in
Figure 2. Each BCnowledge Layer must logically cooperate with KaSeA system with
a terminology loaded. During loading terminology all signatures for concepts are
calculated. The terminology contains theses notions in terms of which the External
Data Source will be queried. Another component is an XML file that contains
mappings between the ontology and an external data source. We can distinguish three
types of mappings: concept mappings, role mappings and attribute mappings.

www.manaraa.com

304 Krzysztof Goczyla, Teresa Zmvadzka, Michal Zmvadzki

DIGUT
queries / responses

Outer world

Miiif-piiiQS tjft'Apen or
cî 'd RxlurriHl i l ' i t j hu

Wapp rigs

Knowledge
layer

•0 'J3>

(.
SIgMa 1

SIgMa
DB

SijnaL

KnowledgB base

KaSsA
with loadod
terminology

KaSeA

r.'o

!̂ '
Data sources

External <
Data Source

Fig. 2. The Knowledge Layer architecture

A concept mapping is a pair: concept and query allowing to retrieve all individuals
belonging to this concept. By role mapping we mean a pair: role and query allowing
to retrieve all pairs of individuals which are related to each other via the specified
role. Analogically, by the attribute mapping we mean a pair: attribute and query
allowing to retrieve values of the specified attribute for the individuals.

The key component of the Knowledge Layer is SigMa {Signature Mapper). SigMa
is responsible for:

- transforming mappings defined in the file to the signature mappings,
- storing these mappings in the SigMa database and
- answering queries asked in terms defined in the ontology.

The first task requires obtaining information about signatures of concepts from
theKaSeA system. Each pair: concept and query is transformed to another pair:
signature and query. The query remains unchanged and the signature for the mapped
concept (possibly complex) is calculated on the basis of signatures stored by the
KaSeA. These mappings are stored in SigMa database. Answering queries asked
in terms defined in the ontology requires finding the most suitable query
understandable by External Data Source.

The next advantage of the Knowledge Layer is its unawareness of the variety
of types of data sources (SQL, XML, CSV, XLS, MDB and so on). The only thing
the Knowledge Layer must know are queries defmed in the mapping file. However,
the Knowledge Layer does not have to know their meanings. Another components,
i.e. Wrappers, are responsible for understanding these languages. Such a situation
is presented in Figure 3. In this way the process of fmding by the SigMa system
the most suitable query imderstandable by the External Data Source is independent on
the type of the data source. However, such a solution puts one requirement: there
must exist a query language for any, supported by the Knowledge Layer, type of data
source. This language must fulfill some requirements (e.g. it must allow to formulate
the union of queries returning the set being a union of results of corresponding simple

www.manaraa.com

Managing Data from Heterogeneous Data Sources Using Knowledge Layer 305

queries) and in this language the queries in mapping file must be expressed.
Obviously, not all previously mentioned types of data sources have such languages.

DIGUT DIGUT DIGUT DIGUT
queries / responses queries / responses queries / responses queries / responses

Knowlcdgo

b.:L '^y""
.l.inpinj'-j

Knowledge
layer

* . * - j - i '^t

Knowledge
layor

I.".-.' -g'.

Knowledge

XV. '"^^
'•'• I " ' J

SQL
Wrapper

CSV
Wrapper

CSV
Wrapper

XML
Wrapper

tomal I Extomal
Data Source

. _ (SQL) J

External |
•ata Source
. <CSV) . .

bxtemal
Data Source

l_ (CSV) J

I External
Data Source

' ^ (XML)

Fig. 3. Knowledge Layer for various types of External Data Sources

Thus, in the course of development of Knowledge Layer also such languages must be
specified. The next part of the paper is focused on SQL Data Source because SQL
allows for retrieving data and, what is even more important, most data sources are
relational.

4 Maximum Coverage algorithm

The key problem in SigMa is to find the most suitable query retrieving individuals for
the specified concept. The most suitable queries for mapped concepts are just
the queries stored in the database. There is one very important assumption for such
queries. The query corresponding to a signature always retrieves all individuals which
belong to the concept with that signature. To formulate the most suitable query for
concept which is not mapped, and is represented by the signature s, SigMa must
create a new signature combined from some number of existing (mapped) ones that
is subsumed by the signature s and which covers the maximum number of atomic
regions represented by the signature s. It is important to notice that by taking
the signature which covers the maximum number of atomic regions represented by
the signature s we guarantee that all individuals stored in the External Data Source
which certainly belong to the concept represented by the signature s will be retrieved.

However, it can be a situation when a query concerns the signature s = 001100
representing concept People, for example and in the External Data Source only
a concept Women is mapped (in the EDS no information about men is included). Let
us assume that the concept Women is represented by the signature 001000. In such

www.manaraa.com

306 Krzysztof Goczyla, Teresa Zawadzka, Michal Zawadzki

a situation SigMa creates a signature 001000 and this signature for this specific EDS
covers the maximum number of atomic regions represented by the signature 001100.

The list of signatures that must be combined is deduced by the MC {Maximum
Coverage) algorithm described below. The MC algorithm is based on the Apriori
algorithm [9].

Algorithm 1. Maximum Coverage algorithm

Input: A signature s.
Output: A union of intersections of signatures that covers maximal number

of atomic regions described by signature s.

1. If signature s exists:
2. Return the signature.
3. Else
4. Make lists IQ, h, h empty.
5. Find all mapped signatures that are not disjoined with and not subsumed by s

and append them to the list 4.
6. Find all mapped signatures that are subsumed by s and append them to the

list /,.
7. If list lo is not empty:
8. For each pair (Sj, Sj) such that 5,-, Sj e lo; st i= s/.
9. Calculate signature s, = Sj AND s, (keep track of signatures used)
10. I{s, = s
11. Return a list of signatures whose intersection created signature S/.
12. Else If 5, is subsumed by s append s, to the list /;.
13. Else append Si to the list I2.
14. End
15. While list I2 is not empty:
16. Copy list 12 to I3 and clear list l2-
17. For each pair (5,, Sj) such that si e Is, sj e Ig:
18. Calculate signature s, = s,- AND Sj (keep track of signatures used)
19. If s, = s
20. Return a list of signatures whose intersection created

signature s,.
21. Else If 5, is subsumed by s append s, to the list //.
22. Else append s, to the list /?.
23. End
24. End
25. End
26. For each s, e /j delete those 5, which are subsumed by any other s, in /;.
27. List IJ contains list of lists of signatures. Return this list as a union of

intersections of signatures from list /;.
28. End

www.manaraa.com

Managing Data from Heterogeneous Data Sources Using Knowledge Layer 307

5 SigMa system design

Having defined the MC algorithm it is possible to describe the solutions applied
in SigMa to provide services responsible for creating signature mappings, storing
these mappings in the SigMa database and answering queries asked in terms defined
in the ontology. The next three subsections describe how these aims have been
achieved.

5.1 Creating signature mappings

Creating signature mappings fi-om concept, role and attribute mappings defined
in the mapping file is the first task of SigMa component. Firstly, signatures
for mapped concepts are calculated with the use of KaSeA system with loaded
terminology. In this way it is possible to specify list of pairs consisting of a signature
and a query corresponding to that signature. The pair: a signature and a query
is further referred to as a signature mapping. Such a list of signature mappings
is stored in the database. Secondly, signature mappings for —iC concepts, where C is
a mapped concept, are created. To create a query for the signature of-iC concept, the
MC algorithm is used. The last step of creating signature mappings is creating
signature mappings for Top concept (using the MC algorithm) and for concepts 3R.C.
Having defined the query for the role R and the query for concept C (if C concept is
not a mapped concept, then the query can be created using the MC algorithm) SigMa
creates the query: "return all role subjects of the role R for which the role filler is
an instance of the concept C". All these signature mappings are stored in the database.

5.2 SigMa Database

The schema of SigMa database is quite similar to that specified for the KaSeA system
[10]. The main difference is the fact that in the SigMa database there is no
information about individuals, about their names, relations between them and their
signatures. However, there is an additional entity storing information about queries.
The ERD diagram for the SigMa database is depicted in Figure 3.

The main entity sets presented in the logical schema are: ConceptDefs,
AttributeDefs, RoleDefs, Signatures and Queries. ConceptDefs, AttributeDefs and
RoleDefs store information about mapped concepts, attributes and roles respectively.
AttributeDefs and RoleDefs are related to the entity Queries in that way, that for each
attribute there exists a relationship to the query that returns a list of pairs
of individuals and a value of the attribute, and for each role there exists a relationship
to the query that returns a list of role instances. Concepts are not directly related
to the queries but through their signatures. There is one more entity RoleConcepts.
In this entity all defined in the terminology concepts of the type 3R.C are stored. This
entity is related to the Signature entity via the two relationships.
The existsHasSignature says what the signature is for the concept of the form 3R.C.
And the second relationship conceptHasSignature says what the signature is for
the concept C. The description of the specified entities are included in Table 1.

www.manaraa.com

308 Krzysztof Goczyia, Teresa Zawadzka, Michal Zawadzki

4 ^

hasQuery

isUsadBy

a-

defjnedin

hasQuery

^

K>8xlsl8HaaSlgnature-| hasQuary

•conceptHasSignatura-

Namespacas .e -def lned ln-0< ConceptDefs

Signatures ^

hasSignature

Fig. 4. ERD diagram for SigMa database

In the Signatures entity there are some additional attributes hash and secj, which
have been introduced to make finding needed signatures more efficient.
The application of these attributes has been described in detail in [10]. Entity
Parameters stores the length of signatures and the entity Namespaces stores
namespaces for the terms defined in the ontology.

Table 1. Short description of entities of SigMa database

Entities
ConceptDefs

RoleDefs

AttributeDefs

Queries

Signatures

RoleConcepts

Namespaces

Parameters

Description
Stores information about
mapped concepts
Stores information about
mapped roles
Stores information about
mapped attributes
Stores queries
understandable by a wrapper
of a specified type
Stores signatures used in
signature mappings

Stores concepts of the for
3R.C
Stores namespaces

Stores parameters specific
for the terminology

Entity Attributes
id- concept identifier
name - a local name of the concept
/tf- role identifier
name - a local name of the role
id - attribute identifier
name - a local name of the attribute
id - query identifier
content - content of the query

id - signature identifier,
hash - hash code for the signature,
secjt - no of ones in consequent n
sections of the signature.
No attributes are defined

id- namespace identifier
uri - uri of the namespace
name ~ name of the parameter
value - value of the parameter

www.manaraa.com

Managing Data from Heterogeneous Data Sources Using Know/edge Layer 309

5.3 Processing queries

Knowledge Layer allows processing queries about such inference problems as:
instance retrieval problem, instance check problem, related individuals problem, role
fillers problem and told values problems [8]. The processes of answering queries are
presented below as generic algorithms which can be optimized for specific query
languages and are dependent on wrappers capabilities.

Algorithm 2. Algorithm for instance retrieval problem

Input: A concept C, inpui: t\ concept c
Output: A set of individuals belonging to the concept C.

1. Find a signature for the concept C
2. Find a query for that signature
3. If the signature is not mapped to the query
4. Find the most suitable query (with maximal coverage) using the MC

algorithm
5. Else
6. Fetch the query fi-om the database
7. Execute the query
8. Return the result of the query

Algorithm 3. Algorithm for instance check problem

Input: A concept C, an individual /.
Output: True when / belongs to the concept C, false when i does not belong to the

concept C and maybe otherwise.

1. Find a signature for the concept C
2. Find a query for that signature
3. If the signature is not mapped to the query
4. Find the most suitable query (with maximal coverage) using MC algorithm
5. Else
6. Fetch the query from the database
7. Execute the query
8. Check if the individual i belongs to the result of the query
9. If the individual i belongs to the result of the query
10. Return/rae
11. Else
12. Find a signature for the concept -iC
13. Find a query for that signature
14. If the signature is not mapped to the query
15. Find the most suitable query (with maximal coverage) using MC

algorithm
16. Else

www.manaraa.com

310 Krzysztof Goczyla, Teresa Zmvadzka, Michal Zawadzki

17. Fetch the query from the database
18. Execute the query
19. Check if the individual / belongs to the resuh of the query
20. If the individual / belongs to the result of the query
21. Return fake
22. Else
23. Return maybe

It is worth noticing that despite the fact that External Data Sources are modeled
inCWA {Closed World Assumption) [11], Knowledge Layer opens this world and
provides answers according to OWA (Open World Assumption). In case of instance
retrieval problem the algorithm returns only these individuals for which it is certain
that they belong to the specified concept. In case of instance check problem
the algorithm returns true when it is certain that the specified individual belongs
to the specified concept, false when it is certain that the specified individual does not
belong to the specified concept and maybe when it cannot be unambiguously stated
whether the individual belongs to the specified concept or not.

6 Efficiency tests

The KaSeA system provides inference capabilities of various types. Firstly it allows
inferring implicit knowledge both from terminology and assertions about individuals.
The Knowledge Layer only allows inferring from assertions about individuals.
Table 2 compares times of responses for the query about individuals belonging
to the specified concept (i.e. instance retrieval problem). The test is carried out for
the Drug ontology and Farmadati data source. Drug ontology has been developed by
the University of Liverpool within the PIPS project. The ontology contains
information about drug manufacturers, active ingredients of drugs, interactions about
them and also about ATC {Anatomical Therapeutic Chemical) code. Farmadati data
source is a relational database managed by Oracle 9i that contains information about
drugs, stored in 13 tables. These tables contain 250496 rows. In a presented
architecture we can treat SQL Server as a Wrapper. In case of the Knowledge Layer
times of answering queries strongly depends on the efficiency of various wrappers.
The tests were performed on a PC with Pentium 4, 3GHz and 1GB RAM.

Table 1 presents times of answering queries for instance retrieval problem for
different concepts. The results are average times of same tests repeated 100 times.

Table 2. Times of answering queries for instance retrieval problem

Top
Drug
Drug \ DrugContainer

s\u\v

KaSeA
time to long to count

27407 ms
35094 ms
27305 ms

Knowledge Layer
22687 ms
4656 ms
11375 ms
18969 ms

www.manaraa.com

Managing Data from Heterogeneous Data Sources Using Know/edge Layer 311

The two first concepts are mapped explicitly; it means that the appropriate query for
the signature of Top concept and Drug concept are stored in the SigMa database. For
the two next concepts (S, t/and Fconcepts are subconcepts ofthQATCCode concept)
the query must be formulated on the basis of the MC algorithm. The Knowledge
Layer is able to cache queries previously issued. It means that when a query about the
instances of concept which signature is not mapped to the appropriate query in
the SigMa database is issued, then an appropriate mapping is added to the database.
Then when the same query is issued again, the query is directly fetched from the
database and does not have to be created anew. This feature decreases the time
of executing third and fourth query for about 3000 ms.

7 Related work

The authors of this paper personally experienced the need of managing data from
external data sources within PIPS project {Personalised Information Platform for life
and health Services) [7]. PIPS is a 6th European Union Framework Programme
project whose main goal is to create a Web infrastructure to support health and
promote healthy life style among European communities. One of its main aims is
to develop knowledge management tools covering different information sources.

In the course of the project we have developed the KaSeA (acronym for
Knowledge Signature Analyzer) [1], [2], system, which allows efficient reasoning
from data about large numbers of individuals. The KaSeA system has been developed
using Knowledge Cartography idea. However, the KaSeA system requires all data to
be loaded into the Knowledge Base. It appears that this requirement cannot be always
fiilfilled. Thus in the PIPS project the other solution enriching data source with
Knowledge Layer, which allows treating data from the external data source in
the same way as data stored in the Knowledge Base, has been developed.

Other known practical solutions are data integration systems like Information
Manifold [13], SIMS [14] or PICSEL [15]. However, most of these systems have
been developed with the use of the global view approach when the OWL language
was not a W3C standard. The systems were focused on particular field of application
and therefore also the type of data sources. Despite the fact they were focused
on performance - they cannot fulfill the requirements put by Internet which the
Knowledge Layer has been developed for.

8 Summary

The presented solution of Knowledge Layer has many advantages:

- it is independent on the format of data source - for structured data sources like
XML sources, relational sources or any other sources which have a query language
and the processor for this language the only thing that is needed is to define
appropriate mappings in the XML file;

www.manaraa.com

312 Krzysztof Goczyla, Teresa Zawadzka, Michal Zcnvadzki

- it can be applied for data sources which do not have any query language defined
(e.g. XLS files) - in such a situation there must be defined the way of querying
a data source and must be developed a kind of wrapper;

- all changes in data source that do not affect the structure of that data source are
always visible in Knowledge Layer without any updates;

- changes in the structure of a data source require changing the mappings defined
in the XML file - the process of creation new signature mappings is much shorter
than the process of loading data into KaSeA system, e.g. for Farmadati data source
the time of loading data into KaSeA system is about 48 hours and the time
of creation signature mappings is about 3 minutes;

- no advanced techniques for update of knowledge base are required.

References

1. Goczyla K., Grabowska T., Waloszek W., Zawadzki M.: The Cartographer Algorithm for
Processing and Querying Description Logics Ontologies. LNAI 3528: Advances in Web
Intelligence, Third International Atlantic Web Intelligence Conference, Springer 2005. pp.
163-169.

2. Goczyla K., Grabowska T., Waloszek W., Zawadzki M.; The Knowledge Cartography - A
new approach to reasoning over Description Logics ontologies. SOFSEM 2006: Theory and
Practice of Computer Science, LNCS 3831, pp. 293-302.

3. Calvanese D., Giacomo D. G., Lenzerini M.: Ontology of integration and integration of
ontologies. Proceedings of the International Workshop on Description Logics, 2001.

4. Calvanese D., De Giacomo G., Lenzerini M: A Framework for Ontology Integration.
Proceedings of the First Semantic Web Working Symposium, 2001, 303-316.

5. Semantic Web Initiatives, http://www.semantic-web.org/.
6. OWL Web Ontology Language Guide, W3C Recommendation 10 February 2004,

http://www.w3.org/TR/owl-guide/
7. Goczyla K., Grabowska T., Waloszek W., Zawadzki M.: Inference Mechanisms for

Knowledge Management System in E-health Environment, In: „Software Engineering:
Evolution and Emerging Technologies", Eds. K. Zielinski, and T. Szmuc, lOS Press, Series:
„Frontiers in Artificial Intelligence and Applications", 2005, pp. 418-423.

8. DIGUT Interface Version 1.3. KMG@GUT Technical Report, 2005, available at
http://km.pg.gda.p1/km/digut/l.3/DIGUTJnterface_l.3.pdf

lO.Wittem I. H., Frank E.: Data Mining. Practical Machine Learning Tools and Techniques
with Java Implementations. Morgan Kaufmann Pubhsher 2000.

ll.Waloszek W.: Cartographic Method of Knowledge Representation in KaSeA, Technologic
Przetwarzania Danych, Wydawnictwo Politechniki Poznanskiej, 2005, pp. 14-25 (in Polish),

12.Baader F. A., McGuiness D. L., Nardi D., Patel-Schneider P. F.: The Description Logic
Handbook: Theory, implementation, and applications, Cambridge University Press, 2003.

13.Levy A. Y.: The Information Manifold Approach to Data Integration, IEEE Intelligent
Systems, numer 13,1998.

14.Arens Y., BCnoblock C. A., Shen W.: Query Reformulation for Dynamic Information
Integration, Journal of Intelligent Information Systems, 1996.

IS.Lattes V., Rousset M.-C: The use of CABIN language and algorithms for Information
Integration: the PICSEL project, W: Proceedings of the ECAI-98 Workshop on Intelligent
Information Integration, 1998.

www.manaraa.com

Checkpoint-based resumption
in data warehouses

Marcin Gorawski and Pawel Marks

Silesian University of Technology,
Institute of Computer Science,

Akademicka 16,
44-100 Gliwice, Poland

{Marcin.Gorawski, Pawel.Marks) @polsl.pl

Abstract. In the paper we focused on the problem of efficient handling of ETL
processes failures. During such a process, a data warehouse is filled with data.
Because large amounts of data need to be processed, the whole process takes a
lot of time. After a failure there may be no time to restart the process. In such a
situation a resumption algorithm should be applied. In the .paper we present a new
approach to the checkpoint-based resumption method. We combine checkpointing
with the Design-Resume algorithm. Such a combination is supposed to work more
efficiently than the pure checkpointing. Moreover, not all the ETL application
modules must implement the checkpointing. We present a basic idea of the
algorithm, its requirements and necessary definitions. The proposed solution is
then compared to other resumption methods and obtained results are discussed.

1 Introduction

Data warehouses collect large quantities of data. Their task is to provide the decision
support applications used by managers and directors with the necessary data. The
more up-to-date the warehouse is, the closer to the reality are the results of analysis
performed by DSS applications, and the better decisions can be made. The data set
stored in a data warehouse (DW) is usually taken from transactional systems. Not all
the data are required, in business applications it is usually approximately 20% of the
transactional data set. Moreover, records are usually processed before they are loaded
into a destination database. A whole process of extracting and transforming the data
and loading them into a destination is called ETL that is an abbreviation for Extraction,
Transformation and Loading.

Nowadays data warehouses collect giga- or even terabytes of data. It is not a
surprise that in the case of so huge data sets, an ETL process (further called simply
extraction process) takes long hours or even days to perform a full load. Depending on
a data warehouse system two kinds of DW loads may be met: full and incremental.
During a full load all the data already stored in a DW are deleted, and when the
warehouse is empty then a loading starts. During incremental load only the data that
changed since the last load are processed. It makes the incremental load much shorter
than the full load. However, it is not always possible to run the incremental load. If the

Please use the following format when citing this chapter:

Gorawski, M., Marks, P., 2006, in IFIP International Federation for Information Processing, Volimie 227, Software Engi
neering Techniques; Design for Quality, ed. K. Sacha, (Boston: Springer), pp. 313-323.

www.manaraa.com

314 Marcin Gorawski, Pawel Marks

data changes are too complex, or aggregates computation is made in a way they cannot
be easily updated, we must run a full load.

During a load process, a data warehouse is not available. That is why an ETL
process is usually run in a time window when the system is idle (for example in the
night or during a weekend). Here a problem may appear. In order not to disrupt the
managers' work, an ETL process must not exceed the fixed time window. It fits the
window if the processing goes without any unpredicted events. Unfortunately such an
ideal situation sometimes does not take place. Statistically every thirtieth ETL process
fails due to a system or hardware failure [10].

Occurrence of a failure interrupts an ETL process. The warehouse contains partially
loaded data set, which in most cases is inconsistent. Such a dataset is unusable. In such
a case we have three choices:

- restart the ETL process,
- restore the warehouse from a backup copy created before starting the ETL process,
- run the resumption procedure and continue the interrupted process.

Restarting the extraction from the beginning is the easiest option but it is also the
most inefficient. The second option is to use a backup copy of the warehouse content.
It is better to have the old data than to have no valid data at all. The best choice is to
load only the missing part of the data set. The data set will be then consistent, and the
time of producing the missing tuples should be short enough to fit in the remaining
time. Resuming the interrupted ETL process is called resumption process.

In this paper we focus on the algorithms for resumption of the interrupted extraction
process. In section 2 we present the current state of the art, describe the most common
resumption techniques, present their advantages and disadvantages. In section 3 we
present our approach to the checkpoint-based resumption algorithm. The results of the
performed tests are included in section 4.

2 Previous works

Most commercial tools or tools such as Ajax [3] do not consider the internal structure of
transformations and the graph architecture of ETL processes. Exceptions are researches
[11,12], where the authors describe the ETL ARKTOS (ARKTOS II) tool. To optimize
ETL process, there is often designed a dedicated extraction application adjusted to
requirements of a particular data warehouse system. Our experience prompted the
decision to build a developmental ETL environments using JavaBeans components
(ETL/JB and DR/JB). In the meantime, a similar approach was proposed in paper [1].

Further speeding up of the ETL process encouraged us to abandon JavaBeans
platform. Our new ETL-DR environment succeeds the previous ETL/JB (JavaBeans
ETL environment) and DR/JB (ETL environment with a Design-Resume algorithm [7]).
The new ETL-DR environment is a set of Java object classes, used to build extraction
and resumption applications. This is analogous to JavaBeans components in the DR/JB
environment. In the DR/JB we implemented a dynamic estimation mechanism detecting
cases when the use of DR resumption is inefficient. Another direction of our research is
combining the DR resumption with techniques such as staging and checkpointing.

www.manaraa.com

Checkpoint-based resumption in data warehouses 315

Similar research was presented in [7] where the authors compared the DR algorithm
to its combination with savepoints. They proved that the DR-savepoint combination
performs a little better than the pure DR. Unfortunately these experiments were
performed on very small TCP-D data sets. In our opinion it gives non-representative
results, because in data warehousing we have to deal with much larger datasets. We
tried to combine the DR algorithm with the staging. After a failure part of the data set
can be restored from the disk and there is no need to process it again. We gave the name
"hybrid resumption" to the obtained algorithms combination. In [5] we showed that the
proper use of the staging can be a quite efficient solution. The proper selection of the
nodes writing stage data to disk files is crucial to reduction of the overhead imposed on
the uninterrupted extraction process. In our experiments we managed to increase the
resumption efficiency whereas the normal extraction time remained almost unchanged.

3 Checkpointing

A concept of checkpoints or snapshots is in general very simple. Assuming that there is
a process running for a long period of time and it is failure prone (mostly hardware
failures) we can create so called checkpoints. What a checkpoint is? It is nothing more
than a copy of the process state. It is saved in a way that makes it possible to revert the
process to the saved state and continue the processing whenever there is such a need.
There are many applications of this method: fault tolerance, process migration, job
swapping [9], virtual time [2].

We decided to apply the checkpointing to increase the resistance of the data
extraction process against system failures. The extraction process usually takes a lot of
time and cannot be interrupted. Accidental hardware failure or blackout may lead to loss
of the results of many hours of work, even if it is was very close to the end of the process.

Our previous experience with combining the Design-Resume algorithm (DR) with the
staging technique prompted us to combine the DR algorithm with the checkpointing. Both
the DR and checkpoints are very efficient methods. The difference between them is the
overhead imposed on the normal extraction process. The DR takes no additional actions
during the extraction, so it has no influence on the process duration. The checkpointing
is completely different. It may lengthen the processing even a few times depending on
the frequency of checkpoints creation and amount of the data stored during each save.

Increasing the frequency of checkpoints creation leads to significant drop of the
processing efficiency. In our research we focus on creating checkpoints in the most
efficient possible way. We want to combine the checkpoints with the DR algorithm
which uses the graph-based ETL process description, so in our research we will use the
graph description also.

3.1 Graph-based ETL process description

In graph representation of the ETL process, graph nodes are responsible for tuples
processing and graph edges define tuple flow directions. Each node belongs to one of
the three categories:

- extractors reading data from sources

www.manaraa.com

316 Marvin Gorawski, Pawel Marks

O ^ ... (r^-^(^^(^ ... -<Z)
Fig. 1. Example of a simple extraction graph. E is an extractor node reading data from a source.
T stands for a transformation node, such as filtration, grouping etc. / is an inserter loading data
to a destination (e.g. a database table)

- transformations performing operations such as selection, projection, aggregation, etc,
- inserters loading tuples to destination places

An example graph is presented in Fig. 1. It consists of one extractor, one inserter
and a few transformations. It is an example of the linear processing, it means that each
graph node has at most one source node and one target node. Of course, the graph can
be much more complicated: transformations can receive data from many source-nodes
0oins, for example) and send results to many target-nodes.

The DR algorithm requires that the extraction graph is acyclic: during traversing
the graph, there is no possibility to visit the same node twice. In our research this
limitation is not a problem, it even simplifies graph analysis.

Each graph node and each node input is described by a set of boolean properties
and key attributes. These properties are used by the DR algorithm to compute the place
and type of additional filters used during resumption. Thanks to these properties, the
algorithm can treat the nodes as black boxes and does not have to know anything more
about the processing perform by them. The great advantage of the DR algorithm is no
need of modifications of the existing nodes. During resumption they remain unchanged,
only additional filter nodes are inserted into the graph to ensure that only the missing
part of the data set will be produced.

3.2 Details of the ETL process implementation

To talk about the optimization of the checkpoints creation we have to provide some
details of the ETL application implementation. The graph-based ETL process is
implemented as a multi-threaded Java application. Each node works as a separate
thread communicating with other nodes via shared memory and message passing.

Fig. 2 shows an example of connection between two nodes. Node 123 produces
tuples and stores them in the output buffer. The buffer is a multichannel structure;
it can transmit data to multiple receiver-nodes. Such a receiver in this case is node
124. It has an input parameter defined as a source node ID = 123 and output channel
number = 1. Output buffer contains a packet queue in each logical channel, and each
packet contains a hmited number of tuples. Grouping tuples into packets increases the
efficiency of communication between nodes by reducing the number of required thread
synchronizations.

As can be noticed, one of the data sets that each node owns, is the output buffer
containing output tuples. Moreover, there are nodes such as grouping ones, which can
store in memory their temporary data structures. Depending on the kind of the processing
it can be a small or quite large set of data. No matter when the checkpoint is created, all
the data of each graph node must be saved. Besides the data sets, thread state has to be
saved also, to enable restarting the processing from the point saved in the checkpoint.

www.manaraa.com

Checkpoint-based resumption in data warehouses 317

Output

1 * 1
1 *' 1

1 #n 1

Logical
c>

Input:
- sourcBiD - 123
~ sourceChannel = 1

Iitput
, Data

Fig. 2. Nodes interconnection on the implementation level. Data produced by node 123 are stored
in a multi-channel output buffer. Source of the node 124 is defined as a node with ID = 123 and
logical output channel number = 1

(VMQ(29J) »{joT(30))—^(FUTOI)

Fig. 3. Extraction graph divided into three functional blocks which are: extractors (the left most),
transformations (in the middle) and inserters (the right most)

3.3 Graph analysis

We propose dual approach to the graph analysis for checkpoints. First, the graph is
analysed as in the DR algorithm [7]: the nodes properties are processed. In the next
step, the graph is seen as three functional blocks: extractors, transformations and
inserters. Between these blocks the connections exist: many connections from extractors
block to transformations block, and as many connections from transformations to
inserters as many inserters there are in the graph.

Fig. 3 presents a graph split into functional blocks. Connections between the blocks
are marked with circles. In the given example it would be the best to be able to save
the state of all the nodes belonging to the three functional blocks. In practice it is
usually impossible or it costs too much time:

- each inserter would have to make a copy of a complete database table. In data
warehousing it means transferring even gigabytes of data which takes a very long time

www.manaraa.com

318 Marcin Gorawski, Pawel Marks

- period of time between checkpoints could be treated as a transaction but even
assuming that the database could handle such a case, a synchronization of such a
transaction in distributed data warehouse would be too complicated (if at all possible)

- extractors would have to be able to return to the place in the data stream where
they were when the checkpoint was created. It is possible to do, but requires
additional implementation-level modifications

However, there are no significant difiiculties to save the state of transformation
nodes. This is the main assumption, the algorithm discussed below bases on.

3.4 Algorithm details

The goal of the presented algorithm is periodical saving of states of the transformation
nodes and optionally extractors or inserters. The saved states should enable resumption
of the interrupted ETL process. General steps of the algorithm are as follows:
1. Analysis of the graph properties to check if the algorithm can be applied
2. Periodical creation of the checkpoints
3. Assignation of filters for resumption phase
4. Insertion and initialization of resumption filters, optional switching insert

ers/extractors into resumption mode

Graph traversing and analysing The graph is analysed as in the DR algorithm in
both topological and reversed direction. In the first step graph nodes are checked if they
support checkpointing:

- a transformation should have the possibility to save and restore its state in any
moment of the processing,

- an inserter should have the possibility to save and restore its state or possibility of
identification of the last loaded tuple,

- an extractor should have the possibility to save and restore its state or possibility to
get the part of the stream read before a failure once again.

Further in the paper we will say that if a node can save and restore its state, it
holds the checkpointable property. Now for each graph node X, a transitive property
checkpointFeasible(X) is computed. It is defined as follows:

Definition 1. checkpointFeasible(X) = true, if:

- X is an inserter and holds checkpointable property or (it holds suffixSafe^ and
mapToOne^ properties and can remember the last loaded tuple)

- X is a transformation and holds checkpointable property and all its direct target
nodes holds checkpointFeasible property

- X is an extractor and all its direct target nodes holds checkpointFeasible property

suffixSafe[l] property is described in the definition 4
^ mapToOne[7] property is held if each input tuple contributes to no more than one output

tuple. All inserters hold this property

www.manaraa.com

Checkpoint-based resumption in data warehouses 319

If any of the extractors does not hold the checkpointFeasible property, it means that
the checkpointing cannot be apphed to this graph, because one or more nodes do not
support the method.

In the second step the graph is analysed to check the possibility of additional filters
insertion. The task of an additional filter is removing from a tuple stream these tuples
which were processed before creating the checkpoint (extractor filters) or tuples loaded
after checkpoint creation and prior to a failure (inserter filters). Such filters can (but do
not have to) be placed on connections between the three functional blocks. Here we
can distinguish two cases:

- extractor does not hold checkpointable. The filter is inserted just behind the extractor
- inserter does not hold checkpointable. The filter is inserted just in front of the inserter

In the Design-Resume algorithm[7] four types of filters are used: CleanPreflx,
CleanSubset, DirtyPrefix, DirtySubset. We focus only on the two first filters, which
were described in details in [7].

Filters preceding inserters are inserted according to the rules known from the DR
algorithm. Both CleanPrefix and CleanSubset filtration is possible. CleanPreflx filter
requires the input of the inserter Y connected to the node X to hold the transitive
property sameSuffix(Yx). This property denotes that on the input Yx the suffix of the
data stream will be provided in the same form as it would be provided if the processing
would not have been interrupted. If this property is not held, only a CleanSubset filter
can be used. The sameSuffix property bases on the following properties:

Definition 2. sameSet(X) = true, if:

- X is an extractor and during the resumption it generates the same set of tuples as
prior to a failure

- Xis a transformation that for the same input sets always generates the same output set

Definition 3. setToSeq(Yx) = true, if for any permutation of the input set received
from the node X, the node Y always generates the same output sequence. It is true for
sorting transformations.

Now a sameSuffix property can be defined:

Definition 4. sameSuffix(Yx) = true, if:

- X is an extractor and during the resumption it generates the sequence of tuples as
prior to a failure. Optionally a prefix of the sequence excluding the last prefix tuple
can be removed

- X is a transformation that holds inDetOu^ property and whose each input node V
holds sameSuffix for each input or (it holds sameSet(V) and the X's input holds
setToSeq(Xv))

' inDetOut[7] property is held if for the same input sequences the node generates the same
output sequence

www.manaraa.com

320 Marcin Gorawskr, Pcnvel Marks

Saving application state When a checkpoint is created, state of all nodes holding
checkpointable is saved. These are for sure all the transformations and optionally
extractors or inserters. Efficient creation of checkpoints requires a special creation
procedure. Out of the discussion is the necessity of putting the nodes into the state to
which they can return after restoring their states. We talk about both the temporary data
and buffers and also current position in the running code. Creation of a checkpoint has
been divided into three phases: stopping the nodes threads in conjunction with output
queues emptying, saving nodes state, continuation of the processing.

Filter assignation Behind an extractor only a CleanPrefix filter can appear. This
guarantees that only the required data stream suffix will be provided to the transformation
input. Of course the input must have key attributes set, otherwise filtration will not be
possible. If an extractor supports such a possibility, the built-in reextraction procedures
can be used instead of filters. Known from the DR algorithm GetSuffix procedure
replaces the CleanPrefix filter, and GetDirtySuffix procedure can be used instead of the
DirtyPrefix filter [7]. In this case additional CleanPrefix filter is still necessary to get
the same result as by use of a GetSuffix procedure. Filters placed in front of inserters
are being assigned basing on the DR algorithm rules.

The filters are required only when a particular extractor or inserter does not hold
a checkpointable property. If the extractor or inserter state can be restored from a
previously created checkpoint, no filters are needed.

Resumption initialization Resumption initialization procedure is simple. After an
interruption of the ETL process, the latest checkpoint must be found. Then it is loaded
which means that the state of all graph nodes holding checkpointable property is
restored. Now insertion of additional filters begins and the filters are initiaUzed. Filters
inserted behind extractors are informed what the last tuple received by the subsequent
transformation is. Filters preceding the inserters are initialized with data taken from the
inserters. Next inserters are switched to resumption mode. It causes that already loaded
data set is not erased and new tuples are appended to the existing set.

4 Efficiency tests

4.1 Test Conditions

The base for our tests is an extraction graph containing 4 extractors reading tuples
from 4 source files and 15 inserters (loading nodes) loading tuples into 15 database
tables. The graph consists of three independent parts, but it is seen by the extraction
appMcation as a single ETL process.

The ETL process generates a complete data warehouse structure. It is a distributed
spatial data warehouse system designed for storing and analyzing a wide range of
spatial data [4]. The data is generated by media meters working in a radio-based
measurement system. All the data is gathered in a telemetric server, from which it can
be fetched to fill the data warehouse. The distributed system is based on a data model
called the cascaded star model. The test input data set size is 500MB.

www.manaraa.com

Checkpoint-based resumption in data warehouses 321

Method

Hybrid
DR stream
Checkpoint

Extraction time [s]

1475
1366
1496

% change
to the fastest

method
+8%
0%

+9%

Tab. 1. Measured extraction time for failureless cases

The tests were divided into three parts. In the first part we examined the resumption
efficiency of the hybrid resumption algorithm (DR + staging) [5]. During this test all
the join transformations worked in a buffering mode. It means that they collect all the
tuples from the slave input iirst, then they start on-line processing of the master input.
In such a mode VMQ'' nodes are required to avoid data flow deadlocks, but on the
other hand we can make use of the staging technique used by the hybrid algorithm.

In the second step we analysed the efficiency of the pure DR algorithm. This time
all the join transformations worked in stream mode. In the stream mode we cannot
distinguish prebuffering and on-line processing phases. Tuples from both inputs are
processed simultaneously and only a small set of tuples may be buflfered. In this mode
the VMQ nodes are disabled.

In the third part we used the same extraction graph as in the second part, but this
time we examined the efficiency of checkpointing. We focused on both: increase of the
normal processing time caused by checkpoints creation and the resumption efficiency.
In this test the extractors and inserters were unable to remember their states in created
checkpoints, so additional filters had to be inserted into the graph.

The tests were ran on two PC machines with Pentium IV processors and 512MB of
RAM. On one of them Oracle lOg database was running, and on the other one the ETL
application was started. Communication with the database was implemented using
Oracle OCI drivers and SQL*Loader. A single uninterrupted extraction process time
varied from 22 to 25 minutes.

During each loading test the extraction process was interrupted in order to simulate
a failure. The resumption process was then run and the time was measured. Using
collected results we prepared resumption charts showing the resumption efficiency
depending on the time of a failure,

4.2 Extraction and Resumption Tests

The goal of the tests is to compare the efficiency of various extraction and resumption
methods for the same extraction graph. Three aspects were analysed: influence of the
chosen method on the time of the normal (uninterrupted) ETL process, resumption
time and overall processing time^.

'* VMQ (Virtual Memory Queue) is a special node storing large amounts of data on external
storage to avoid running out of memory. It is desirable not to use it because accessing external
storage lowers the efficiency

^ Overall processing time is the sum of the resumption time and the time of failure. It expresses
the amount of time required to finish the ETL process in case of failures

www.manaraa.com

322 Marcin Gormvski, Pawel Marks

-HBR-TT -

- CHK-TT -

-HBR-RT -

-CHK-RT

200 400 10QO 1200 1400

-HBR-TT •

•CHK-TT -

-HBR-OT - • * - • DR-TT

-CHK-OT

Fig. 4. Resumption (left) and overall (right) time plot. TT denotes Total Time of the normal
processing, RT is the Resumption time, OT is the Overall Time

Table 1 compares extraction times for the three presented methods. The pure DR
algorithm using stream-like joins is the fastest one. The reason why it is faster is in our
opinion no VMQ nodes buffering the data. Data streams are processed on-the-fly, all
the graph nodes are working all the time, none of them is idle. Unfortunately in such a
case the use of staging technique makes no sense[5]. When join transformations work in
a buffering mode, the data provided to the master inputs must be buffered until all the
slave input tuple are read. The buffering lengthens the processing due to additional disk
accesses. The third method uses the extraction graph used in the first test case, but it
creates a checkpoint every 60 seconds. Creation of checkpoints lengthens the processing
time also, but comparing to the hybrid method the overhead is relatively small.

Figure 4 shows the resumption times of the examined methods compared to the time
of uninterrupted extraction. As we can see DR and checkpoints resumption efficiency is
initially similar, but the later a failure occurs, the more efficient the checkpoint method is.
For failures occurring at the end of the ETL process, the efficiency of the DR closes to
the efficiency of the hybrid algorithm. The most important here is to have the resumption
curve below the line denoting normal extraction time {TT). Otherwise it means that
the resumption last longer than simple restarting the whole process from the beginning.

In fig. 4 overall processing times are compared also. Overall processing time is the
sum of the processing time prior to a failure and the sum of the resumption time. It
simply can be explained as the time between starting and finishing the ETL process
assuming that after a failure the resumption process runs without any delay. Here again
we can see that checkpointing is the best solution. The closer to the TT line is the
resumption curve, the better. One should notice that it is impossible to have resumption
curve below the TT line. If it was, it would mean that it is better to interrupt the
extraction and then run the resumption.

5 Conclusions

In the paper we presented a new approach to the problem of resumption of the
interrupted extraction process using checkpoints. The approach mixes two mechanisms:
ETL application state saving and restoring which is typical for checkpointing, and usage
of additional filters which is used in the Design-Resume [7] algorithm. We assumed that
nodes such as extractors or inserters can work in a way making impossible to save and

www.manaraa.com

Checkpoint-based resumption in data warehouses 323

restore their states. Even if it is possible, its overhead may be too big and may lower
the efBciency of the running process significantly. The proposed algorithm can work
without storing the states of extractors and inserters. To make the application consistent
during the resumption additional DR-like filters are inserted into the graph. The task of
the filters is to remove from a tuple stream these tuples which were processed before
creation of the checkpoint or were loaded by inserters. In this case data loaded after
creation of the checkpoint are not lost, and additional filter ensures that they are not
loaded to the warehouse again.

The proposed solution was tested in the ETL-RT extraction environment implemented
in Java for research requirements. The environment supports various resumption
algorithms: the Design-Resume algorithm, staging technique, hybrid algorithm (DR +
staging) and the presented checkpoint-based resumption. Because all these algorithms
are implemented in the same environment, the results of the tests we obtained are
reliable and valuable.

The results are very encouraging and promising. The time of the normal extraction
process was increased by less than 10% in comparison to the fastest tested method. In
exchange for this we obtained a significant resumption efficiency growth that was
presented in figure 4.

References

1. Bruckner R., List B., Schiefer J.: Striving Towards Near Real-Time Data Integration for Data
Warehouses. DaWaK 2002.

2. FujiMoto R.: Parallel discrete event simulation, Communications of the ACM, 33(10), 1990
3. Galhardas H., Florescu D., Shasha D., Simon E.: Ajax: An Extensible Data Cleaning-Tool. In

Proc. ACM SIGMOD Intl. Conf. On the Management of Data, Texas (2000).
4. Gorawski M., Malczok R.: Distributed Spatial Data Warehouse Indexed with Virtual

Memory Aggregation Tree. 5th Workshop on Spatial-Temporal DataBase Management
(STDBM_VLDB'04), Toronto, Canada 2004.

5. Gorawski M., Marks P.: High Efficiency of Hybrid Resumption in Distributed Data Warehouses.
1st Intl. Workshop on High Availability in Distributed Systems (HADIS 2005), Copenhagen,
Denmark 2005.

6. Gorawski M., Chechelski R.: Spatial Telemetric Data Warehouse Balancing Algorithm in
Orac!e9i/Java Environment, Intelligent Information Systems, Gdansk, Poland, 2005.

7. Labio W., Wiener J,, Garcia-Molina H., Gorelik V.: Efflcient resumption of interrupted
warehouse loads. SIGMOD Conference, 2000.

8. Labio W., Wiener J., Garcia-Molina H., Gorelik V.: Resumption algorithms. Technical report,
Stanford University, 1998.

9. Plank J. S., An Overview of Checkpointing in Uniprocessor and Distributed Systems, Focusing
on Implementation and Performance. Technical report, University of Tennessee. 1997

10. Sagent Technologies Inc.; Personal correspondence with customers.
11. Vassiliadis P., Simitsis A., Skiadopoulos S.: Modeling ETL Activities asGraphs. InProc. 4th

Intl. Workshop on Design and Management of Data Warehouses, Canada, (2002).
12. Vassiliadis P., Simitsis A., Georgantas P., Terrovitis M.: A Framework for the Design of ETL

Scenarios. CAiSE 2003.

www.manaraa.com

A C++ Refactoring Browser and Method Extraction

Marian Vittek^, Peter Borovansky\ and Pierre-Etienne Moreau^

^ FMFI, Comenius University, Mlynska dolina, 842 15 Bratislava
Slovakia

{vittek,borovan} @fmph.uniba.sk
2 LORIA-INRIA, BP 239, 54506 Vandceuvre-tes-Nancy

France
moreau@loria.fr

Abstract. This paper presents a refactoring tool for C++. Its implementation
illustrates the main difficulties of automated refactoring raising in this case from
the preprocessor and from the complexity of the language. Our solution, using
a back-mapping preprocessor, works in the presence of complex preprocessor
constructions built upon file inclusions, macro expansions and conditional
compilations. Refactorings are computed after full preprocessing and parsing of
target programs, hence, they are based on the same level of program understanding
as performed by compilers. The paper illustrates the main ideas of our approach
on the example of Extract Method refactoring. .̂

1 Introduction

Maintenance of large legacy software systems is a hard task. Refactoring [9,10,15] is a
promising methodology helping developers in this work. Refactoring is a software
development and maintenance process where the source code is changed "in such a way
that it does not alter the external behavior of the code yet improve its internal structure. It
is a discipUned way to clean up code that minimizes the chances of introducing bugs" [9].

For example, renaming of a global variable in to filelndex on all its occurrences
is a refactoring. Replacing on all its occurrences means that only occurrences of this
global variable will be renamed. There may be several local variables in (or many
class members named Hi) which will not be renamed because they are not linked to
the global Hi. In opposition to the full text replacement this is a kind of minimal or
required renaming, making only necessary modifications. Such refactoring improves the
quality of the code because it makes it more readable.

Refactoring browsers are softwai-e tools helping maintainers in performing refactor
ings. In the context of refactoring browsers, the word refactoring is used as a noun to
describe a simple elementary behavior preserving source transformation. When using a
refactoring tool, a human maintainer only selects the required transformation (such as
rename variable) and its input parameters (new name for the variable) and the tool
performs all necessary source modifications. The tool shall guarantee that those modifi
cations do not change the behavior of the program and, hence, does not introduce any
new bug. Use of an automatic tool allows to perform massive changes in source code

This work was supported by Agency for Promotion Research and Development under the contract No. APVV-20-P04805.

Please use the foUowing format when citing this chapter:

Vittek, M., BorovanslLy, P., Moreau, P.-E., 2006, in IFIP International Federation for Information Processing, Volume 227,
Software Engineering Techniques: Design for Quality, ed. K. Sacha, (Boston: Springer), pp. 325-336.

www.manaraa.com

326 Marian Vittek, Peter Borovansky, Pierre-Etienne Moreau

quickly and safely. Refactoring tools usually perform a fixed set of refactorings identi
fied by short schematic names, such as Rename Variable, Move Field, Move Method,
Encapsulate Field, Pull Up Field/Method, Push Down Field/Method, Extract Method,
etc. Among them, the Extract Method has a particular position from the point of view
of evaluation of refactoring tools. This refactoring consists of extraction of a piece of
code into a newly created method with automatically generated parameters and re
turn value. Parameters and the return value are computed after a static analysis of the
program and the quality of this analysis often indicates the quality of the whole refac
toring tool. The method extraction also belongs to the most used refactorings.

In this paper, we present Xrefactory C++, a. tool performing refactorings on C+-t-
programs. The implementation evolved from our previous works on C language [25]. Our
approach is using a back-mapping preprocessor and, while computing the refactorings,
it performs full preprocessing and parsing of C++ programs. At this moment, our tool
performs only a limited set of refactorings, namely all kinds of renaming, refactorings
for adding, removing and moving method parameters and the method extraction. Others
are in progress.

2 Related Works

The concept of refactoring has been discussed during more than a decade [9,15,19,
21]. In chronological order, refactoring has been investigated mainly in the context of
Smalltalk and C++ programming languages without experimental implementations. Later,
the Smalltalk refactoring browser [20] has been developed and was probably the world's
first automated refactoring tool. The importance of refactoring was strengthen by extreme
programming methodology [5,14] as one of its basic rules. Independently, similar
works on program transformations were held in the context of term rewriting [18,23].
After apparition of Martin Fowler's book [9] numerous implementations of refactoring
browsers for Java emerged, among them Intellij IDEA and Eclipse. Refactoring
techniques heavily depend on the underlying programming language and are usually
studied and implemented separately for each language. The refactoring of C/C++ has
been discussed during several years [8,19,22]. However, problems with the language
complexity and the preprocessor caused that C/C++ refactoring tools are still rare, and
not widely accepted. The preprocessor is not part of the language in traditional sense. It
does not enter into its grammar and it makes standard techniques very difficult to apply.
Despite the practical motivations, there is only a small research activity in the area
of C++ refactoring. Eclipse [1] team is working on refactoring support for the CDT
module which is currently limited to a restrictive form of renaming. At the author best
knowledges, the real state of the art is represented by two tools: Visual SlickEdit [3]
and Ref++ [2]. The first one is a self standing Integrated Development Environment
(IDE) which incorporates C++ refactoring features. The second one is a plugin to
MSVC++ environment. They are both approaching C++ refactoring in a practical manner
implementing a large number of refactorings (between 10 and 20), however, they are
both working correctly only in rather simple common circumstances. Those tools offer a
usable solution while not going too deeply into the program structure and, in paiticular,
they do not really analyze problems introduced by the combination of the language and

www.manaraa.com

A C++ Refactoring Browser and Method Extraction 327

the preprocessor. For example, at this time, none of those tools is able to perform correct
refactorings at places where an #if preprocessor directive with an #else branch is present.

A deeper comparison of our approach and the mentioned two tools is difficult because
both tools are commercial and there are only few informations available about their
internal structure and implementation. Anyway, from the external behavior, we can see
that our approach is based on deeper understanding of the source code than provided by
those tools. As we will present in the paper, our tool proceeds correctly all features of the
C++ language as well as all preprocessor constructions including complex combinations
of #if-#else directives. On the other side, due to the complexity of the implementation,
at the moment, our tool is implementing much smaller set of refactorings.

There is also a number of other related works needed to be mentioned at this
place, even if they are not directly concerned by C++ refactoring. Alejandra GaiTido
and Ralph Johnson work on a C refactoring browser at University of Illinois at
Urbana-Champaign [11-13]. Their approach is focused on correct handling of all
preprocessor constructions, including very complex conditional directives, however, few
syntactical restrictions on the usage of those directives are applied. Their tool is relied
to the C language and the solution is not directly extensible to C++. In Berkeley,
Bill McCloskey and Eric Brewer [17] work on a C-like language, where preprocessor
directives will be defined at the language level instead of being purely textual. They
suppose that each C program can be translated into this language and then easily
refactored. Several other projects are dealing with preprocessor while not focused
on refactoring. Semantic Designs is working on a set of source understanding and
transformation tools for variety of languages including C and C++ [4]. An interesting
tool focused on porting C++ programs from one platform to another is developed
by D. Waddington and B. Yao from Lucent Technologies [7]. Those projects are, in
general, incorporating preprocessor constructions in the Abstract Syntax Tree (AST), or
they are incorporating them directly into the grammar of the language. Last but not
least, a number of practical problems connected to the preprocessor has been seriously
examined in independent works focused on source understanding tools [6,24].

3 C++ Refactoring and the Preprocessor

The C++ language evolved from C by accepting wide range of extensions, including
object oriented classes, (multiple) inheritance, overloaded methods and operators,
virtual methods, namespaces, exceptions, templates, etc. An unwanted side effect of
those generous extensions is the difficulty of parsing, understanding and refactoring
C++ programs. Moreover, a usual C++ program is not written in C++. It contains
preprocessor directives which are not part of C++ grammar.

Preprocessor is a serious obstacle in development of a refactoring tool. One possible
approach how to deal with preprocessor directives is their incorporation into the
grammar and the AST and development of a parser working with those extensions.
Unfortunately, the C++ parser itself is very complex and its development is on the
limits of many companies, a direct combination with the preprocessor and development
of a parser for such mixed language seems unrealistic for us. For this reason, we are
using a different approach in our implementation. We are using a standard preprocessor,

www.manaraa.com

328 Marian Vittek, Peter Borovansky, Pierre-Etienne Moreau

parser and AST. Similarly to [6], our preprocessor is extended to generate an additional
back-mapping information allowing to trace each character of the code. Beyond the usual
preprocessed code, the preprocessor generates a table determining for each character of
preprocessed code, from which place of the original source code it comes. Refactorings
are then computed on the preprocessed AST and the necessary source transformations
are backmapped to the original code. This approach is solving majority of problems
related to the parsing of C4-+, because we can use a standard parser developed for
compilers. With a small effort, it also solves problems related to macro expansions and
file inclusions. The real problem is the presence of #if-#else directives. This directive
is basically used to trigger different fragments of code in or out of the compilation
depending on an external configuration. Different configurations are represented by
different initial setting of predefined macros. In order to be able to correctly understand
the whole program (i.e. both positive and negative branches of #if directives), we have
decided to parse the source code several times during a single refactoring. Each parsing
is performed with different initial macro settings. The considered initial macro settings
are entered by the user and are supposed to cover all possible compilations of the
project. The refactoring is computed after having performed all parsings. The way, how
the resulting refactoring is combined from the parsings is specific for each particular
refactoring. For example, in the case of symbol renaming and parameter manipulations,
the resulting refactoring is basically a union of all required modifications (renaming)
from all passes. The situation is more difficult in the case of method extraction.

In the rest of the paper, we will illustrate our implementation by describing in
details the implementation of the method extraction. We prefer to explain our approach
by introducing this single refactoring instead of describing the whole tool. We feel that
in this way, we will illustrate better the main ideas on which the tool is built as well as
the overall complexity of the implementation.

4 Simple Code Extraction

Extraction of a method is a simple and intuitive program transformation, a kind of
intelligent 'cut and paste'. For example, lets take the following program computing the
n-th Fibonacci number for a given parameter:

In 1: int main(int argc, char **argv) -
In 2:
In 3:
In 4:
In 5:
In 6:
In 7:
In 8:
In 9:
In 10:'

int i,n,x,y,t;
sscanf(argv[l], "%d", &n);
x=0; y=r,
for(i=0; ijn; i++) -

t=x+y; x=y; y=t;

printf("%d-th fib == %d"n",
return(O);

, n, x);

When a refactoring tool is asked to extract the code between lines 4 and 7 into a
method (say fib), it replaces the original code by:

In 1: static int fib(int n) -

www.manaraa.com

A C++ Refactoring Browser and Method Extraction 329

In 2:
In 3:
In 4;
In 5:
In 6:
In 7;
In 8:
In 9:
In 10:
In 11:
In 12:
In 13:
In 14:
In 15:
In 16:

int t, y, X, i;
x=0; y=l;
for(i=0; ijn; i++) -

t=x+y; x=y; y=t;
"
return(x);

"

int main(int argc, char **argv) -
int i,n,x,y,t;
sscanf(argv[l], "%d", &n);
X = fib(n);
printf("%d-th fib == %d"n", n, x)
return(O);

"

Determining which variable should be a parameter of the new method is made
automatically. From the implementation point of view, it requires static analysis of the
method, in particular of its local variables. The analysis classifies each local variable
into one of five categories: none, local, in, out, in-out saying that it is respectively
not concerned by the extraction, will become a local variable of the new method,
will become an input parameter (passed by value), output parameter, or input/output
parameter (passed by address). Later, if there is only one output variable, (and it has a
base type), it may be reclassified to return value.

The analysis of local variables is similar to variable lifetime analysis performed by
compilers. For each variable, the method is transformed into a control flow diagram. The
diagram is examined and all usages of each variable are watched. The tool is especially
examining whether a value assigned outside the extracted block is used inside the block,
and vice-versa. If such a control flow is discovered, the corresponding flag is set. After
examination of all possible control flows, resulting flags are evaluated and the variable
is classified to one of the above five categories. There is one more problem needed to
be considered. Let's take the following simple function writing numbers from 0 to 9
and let us suppose that we are going to extract the single line 5 into a new method.

1
2
3
4
5
6
7
8

void fun() -
int i=0;
for(intj=0;jilO;j++)

/* block begin */
cout ji i++;
/* block end */

"
"

In this case, the above analysis indicates that there is a value of the variable i assigned
outside the block which is used inside and there is no value of the variable i assigned
inside the block which is used outside. Logically, this would give a classification for i
as being an input variable. However, due to the loop re-entrance, this variable has to be
classified as input/output. At the time, this benchmark has caused problems to many

www.manaraa.com

330 Marian Vittek, Peter Borovansky, Pierre-Etienne Moreau

professional refactoring browsers. In our implementation, we have solved this problem
by introducing a new flag, indicating whether, in the given control flow, a value has
been passed outside the block and reentered into the block and then reused inside. The
presence of address parameters is a particularity of C++ compared to Java and C. Their
presence in a method requires another small refinement. When watching an address
parameter, all leaving points of the method has to be considered as places where it is
(potentially) used. This is because it may carry out resulting values.

After having classified all variables, the actual extraction of the code is just a
question of text editing. The tool performs moving of the extracted text, generates the
header and the footer of the method and its invocation at the place from where it was
extracted. When a method is a class member and its body is not inside the class, a
declaration of the method into the corresponding class definition has to be generated too.

So far, we did not consider the preprocessor. Possible presence of preprocessor
directives complicates nearly all parts of the implementation. In the following text
we will discuss the complications and the solutions, we have adopted, for each of
preprocessor directives separately.

5 Macros

Macros are defined with the #define preprocessor directive. They allow to textually
replace macro usages into macro bodies, which are usually pieces of code. During the
method extraction, a question arises whether to perform extraction after the macro
expansion or before. In Xrefactory, we are using in fact a combination of both. It is
obvious that the analysis and classification of local variables has to be done after macro
expansion. Otherwise the analysis may be wrong. For example, if we take a fragment:

#define ASSIGN(x,v) -x=vr

int i;
ASSIGN(i,5);

without the macro expansion, we do not know that the variable i is used as an
1-value in the fragment.

On the other side, the new extracted method must be unpreprocessed. It corresponds
to the intuition that the code written in a file is not preprocessed and the new method
should be written in the same manner as it was written by the original developer. We have
solved those two points in a direct ad-hoc way, the variable analysis is performed after
the full preprocessing of the source code, while the actual text extraction is performed
on the original unpreprocessed code. Xrefactory actually implements a real textual cut
and paste of the original code moving the method body as text. This solution protects
original formatting and unpreprocessed structure. It means also that macro usages are
not expanded in the extracted method (even if they were during the variable analysis).

A similar situation occurs during the generation of the header and the footer of the
new method. In our terminology, the header is the beginning of the new method defining
parameters and those local variables carried from outer environment. In the introductory
example, that were the lines 1 and 2 of the method fib. The footer is the piece of code

www.manaraa.com

A C++ Refactoring Browser and Method Extraction 331

assigning the return value (if any). In our introductory example, that were the lines 7 and
8. The header and the footer are pieces of code entirely generated by Xrefactory, it may
seem, that they will be generated from an internal program representation. However,
it may happen that, for example, definitions of variables present in the header used
macros. The typical situation is definition of arrays using macros in their dimensions.
Let's take a code containing an array a and let us suppose that the array is classified as
a local variable for the extracted method. So, the situation in the original code is:

#define MAX'VALUES 1000

inti,j, a[MAX'VALUES];

It is logical that the generated header should be:

void extractedO -
int a[MAX-VALUES];

instead of:

void extractedO -
int a[1000];

In other words, when the original definition of the variable contains macros, it is
expected that the definition in the generated header will contain macros too. For this
reason, Xrefactory composes also definitions of all parameters by a copy-pasting of
corresponding pieces of the original text. From the implementation point of view, it
requires that the parser remembers source positions of corresponding syntactic categories,
such as declaration specifiers and declarator of the parsed text. Moreover, because the
parser acts on the preprocessed code, those positions has to be back-mapped to positions
in the unpreprocessed code and corresponding pieces of code are taken from there.

6 File Inclusion

The include directive allows to insert an entire file into a particular place of source code.
In a usual case, this directive does not represent a particular complication for method
extraction. Inclusion is, in its nature, a very similar operation to macro expansion.
One can imagine that the whole included file is just a body of a long macro which is
expanded at the given place. Efl'ects of the file inclusion are then handled by the same
techniques as macro expansions, i.e. by the back-mapping preprocessor. Note also,
that the include directive rarely occurs in the body of a method, hence, it only rarely
interfere with extraction.

7 Conditional Compilation

The C/C++ preprocessor allows to include or exclude some part of source code
depending on a condition evaluated in compile time. The mechanism is implemented

www.manaraa.com

332 Marian Vittek, Peter Borovansky, Pierre-Etienne Moreau

via #if directive and looks like a usual if statement. Conditional compilation is the
main difficulty introduced by the preprocessor to refactoring tools. The difficulty comes
from usages where the #if directive is used in combination with platform or compiler
specific features. Let's take, for example, the code:

In 1: #ifdefinedC •WIN32)
In 2: #include jwindows.h ,̂
In 3: #define PMACRO(x) Jbox(x++)
In 4: #else
In 5: #define PMACRO(f,x) printf(f,x)
In 6: #endif

In 8: ...
In 9: #ifdeflnedC'WIN32)
In 10: PMACRO(i);
In 11: #else
In 12: PMACRO("%d", i);
In 13: #endif
In 14: ...

This example is a bit artificial, however it perfectly illustrates two problems related
to conditionals. The first problem is that there may be several dependent conditionals
and the program may be unparsable if they are not processed in the same way. The
second problem is that when extracting lines 9 — 13, then two analysis on two different
platforms lead to different classifications of the parameter i. On Windows platform, it
will be classified as input/output parameter and on other platforms as input parameter.
The problem is: in which way to pass this variable to the extracted method so that it
works under both systems?

In our implementation, we have solved both problems by performing multiple
passes over the source code. The number of passes as well as the initial configurations
are fully specified by the user. The user has to specify all combinations of initial
macro definitions which occur in various compilations of the project. For each such
combination (for each preprocessor pass), the source is preprocessed, parsed and the
static analysis of variables is performed. Variables are classified (to be input, output, etc.
parameters) as described in the previous section. After all passes, those informations are
combined into a final resulting classification. The computation of the final classification
is quite intuitive, it is implemented by a binary operation reclassify starting from the
initial classification and merging it with all following passes. The table 1 shows all
possibilities of variable reclassification. After all passes a variable obtains its final
classification (which is the most general of all passes) and the corresponding header of
the new method is generated upon this resulting classification. So, finishing our example,
the variable i would be classified as being an input/output parameter after both passes.

This solution works well when the variable occurs in all passes. However, a variable
can be missing in some passes. For example, let us take the situation:

In 1; void drawCircle(Point c, int d
In 2: #if defined(USE'COLORS)
In 3: , Color color

www.manaraa.com

A C++ Refactoring Browser and Method Extraction 333

n
I
i
0

io

n

n
I
i
0

io

I

I
I
I

0

io

[T
i
i
i
io
io

0

0

0

io
0

io

io

io
io
io
io
io

Tab. 1. Reclassification of variables after two preprocessor passes. The figure shows the resulting
classification of a variable depending on its classifications in the first and the second pass.
Abbreviations for classifications are: n^none, l=local, i=input, o=output, io=input/output.

In 4
In 5
In 6
In 7
In 8
In 9
In 10
In 11

#endif
) -

#if defined(USE'COLORS)
setColor(color);

#endif

"

In this example if we are extracting a block containing only one line, namely the
line 8 with setColor invocation, there will be (at least) two preprocessor passes. A pass
where USE'COLORS is defined and another where it is not. In the first pass, (when
USE'COLORS is defined) there is a variable color, which is classified as an input
parameter. When USE'COLORS is not defined, the variable does not exist at all, so
the above reclassification is not possible. In our implementation, we have considered
two solutions for merging both passes in such situation. The first possibility is to
classify the variable according to the existing pass and to ignore another pass. The
second solution is to note that the variable exists only in some passes and to generate
additional #if directive around its definition. Those approaches would lead respectively
to following extractions, the first approach would generate:

void extracted(Color color) -
setColor(color);

#if deflned(USE'COLORS)
extracted(color);

#endif

and the second approach:

void extracted(
#if defined(USE'COLORS)

Color color
#endif

) -
setColor(color);

www.manaraa.com

334 Marian Vittek, Peter Borovansky, Pierre-Etienne Moreau

#if defined(USE'COLORS)
extracted(

#if defined(USECOLORS)
color

#endif
);

#endif

In the last example, a more careful evaluation of guarding #if directives may
remove the nested conditional. It seems to us that the first approach generates a more
appropriate extraction for human maintainers. Its risky point is that the definition of the
variable may be unparsable in some circumstances. For example, if the type Color is
defined only in passes when USECOLORS was predefined. The situation may be even
worse, in the following example. Let's consider that we extract also the guarding #if
directives, i.e. we extract a block of lines 7 — 9 instead of the single line 9. To compare
both approaches in this case, we will get the following extraction for the first approach:

void extracted(Color color) -
#if defined(USE'COLORS)

setColor(color);
#endif

extracted(color);

and for the second:

void extracted(
#if defined(USE'COLORS)

Color color
#endif

) -
#if defined(USECOLORS)

setColor(color);
#endif

extracted(
#if defined(USECOLORS)

color
#endif

);

In the first approach, the invocation of the extracted method is clearly unparsable,
because the variable color is not defined at the point of invocation of the new method.
On the other hand, in the second approach, the additional generated #if directives can not
be removed at all. The decision which of the two approaches should be implemented in

www.manaraa.com

A C++ Refactoring Browser and Method Extraction 335

our tool was rather a question of taste. The second solution is safe, however, we do not
like it, because of explosion of new generated #if conditionals. Possible reduction of new
conditionals would be a hard task, taking into account how difficult the static analysis
of cpp conditionals is [16]. Moreover, in majority of practical cases, user can always
get sufficiently good extraction with the first approach. In cases when the first approach
fails it is producing syntax error and, hence, there is no danger of introducing an
unwanted bug to the runtime. For all those reasons, we have adopted the first approach
in our implementation. Xrefactory generates non-guarded declarations of variables and
it warns the user in cases when a variable does not occur in all preprocessor passes.

8 Conclusion

In this paper we have presented an implementation of a C++ refactoring browser. In
order to deal with preprocessor, it computes refactorings in terms of source editing
commands instead of AST transformations. Those editing commands are backmapped
from preprocessed code to original unpreprocessed code and then applied. Conditionals
are handled by multiple preprocessor passes and multiple parsings of source code. The
final refactoring is combined from all parsings. This ad-hoc approach works well even
in very complex circumstances and it allows to use a standard C++ parser taken from
a compiler. In our implementation, we are using a professional compiler front-end
produced by EDO company. The whole implementation consists of around 50 000 lines
of code plus around 350 000 lines in the C++ parser. The implementation is available
for download at the address http://www.xref-tech.com/xrefactory.

References

1. Eclipse, http://www.eclipse.org.
2. Ref++. http://www.refpp.com.
3. Visual slickedit. http://www.slickedit.com.
4. Ira D. Baxter and Michael Mehlich. Preprocessor conditional removal by simple partial

evaluation. In Proceedings ofWCRE 2001: Working Conference on Reverse Engineering,
Stuttgart, Germany, 2001. IEEE Computer Society Press.

5. Kent Beck. Extreme Programming explained. Reading, MA, Addison Wesley Longman, Inc.,
107108., 2000.

6. Anthony Cox and Charles Clarke. Relocating xml elements from preprocessed to unprocessed
code. In Proceedings of fWPC 2002: International Workshop on Program Comprehension,
Paris, France, 2002,

7. D.G.Waddington and B.Yao. High fidelity C++ code transformation. In Proceedings of the
5th workshop on Language Descriptions, Tools and Applications (LDTA 2005), Edinburgh
University, UK, 2005.

8. R. Fanta and V. Rajlich. Reengineering an object oriented code. In Procceedings of IEEE
International Conference On Software Maintenance, pages 238-246, 1999.

9. Martin Fowler, (with contributions by K. Beck, J. Brant, W. Opdyke, and D. Roberts).
Refactoring: Improving the Design of Existing Code. Addison-Wesley, 1999.

10. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994.

www.manaraa.com

336 Marian Vittek, Peter Borovansky, Pierre-Etienne Moreau

11. A. Garrido and R. Johnson. Analyzing multiple configurations of a c program. In Procceedings
of IEEE International Conference On Software Maintenance, Budapest, Hungary, 2005.

12. Alejandra Garrido. Program Refactoring in the Presence of Preprocessor Directives. PhD
thesis, University of Illinois, Urbana-Champaign, IL, USA, 2005.

13. Alejandra Garrido and Ralph Johnson. Refactoring c with conditional compilation. In 18th
IEEE International Conference on Automated Software Engineering, Montreal, Canada, 2003.

14. Richard Garzaniti, Jim Huangs, and Chet Hendrickson. Everything i need to know i
learned from the Chrysler payroll project. In Conference Addendum to the Proceedings of
OOPSLA'97, 1997.

15. Ralph E. Johnson and Brian Foote. Designing reusable classes. Journal of Object-Oriented
Programming, l(2):22-25, July 1988.

16. M. Latendresse. Fast symbolic evaluation of c/c++ preprocessing using conditional
values. In Procceedings of the seventh European Conference on Software Maintenance and
Reengineering, Benevento, Italy, pages 170-182, 2003.

17. Bill McCloskey and Eric Brewer. Astec: A new approach to c refactoring. ACM SIGSOFT
Software Engineering Notes, 30(5), Sep 2005.

18. R E. Moreau, C. Ringeissen, and M. Vittek. A pattern matching compiler for multiple
target languages. In International Conference on Compiler Construction, Varsovie, Pologne,
volume 2622 of Lecture Notes in Computer Science, pages 61-76, 2003.

19. WilUam F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis. University of
Illinois, Urbana-Champaign, IL, USA, 1992.

20. Don Roberts, John Brant, and Ralph Johnson. A refactoring tool for Smalltalk. Theory and
Practice of Object Systems, 3(4), 1997.

21. Don Bradley Roberts. Practical Analysis for Refactoring. PhD thesis. University of Illinois,
Urbana-Champaign, IL, USA, 1999.

22. L. Tokuda and D. Batory. Evolving object-oriented architectures with refactorings. In Conf.
on Automated Software Engineering, Orlando, Florida, 1999.

23. Mark van den Brand, Paul Klint, and Chris Verhoef. Re-engineering needs generic
programming language technology. ACM SIGPLAN Notices, 2(32):54-61, February 1997.

24. Laszlo Vidacs, Arpad Beszedes, and Rudolf Ferenc. Columbus schema for c/c++
preprocessing. In 8th European Conference on Software Maintenance and Reengineering,
Tampere, Finland, pages 75-84. IEEE Computer Society, 2004.

25. Marian Vittek. A refactoring browser with preprocessor. In Procceedings of the seventh
European Conference on Software Maintenance and Reengineering, Benevento, Italy, pages
101-111. IEEE Computer Society Press, 2003.

www.manaraa.com

ESC/Java2 as a Tool to Ensure Security in the Source
Code of Java Applications*

Aleksy Schubert^'^ and Jacek Chrzqszcz^

^Institute of Informatics
Warsaw University, Poland

^SoS Group NIII
Faculty of Science

University of Nijmegen, Netherlands

Abstract. The paper shows how extended static checking tools like ESC/Java2
can be used to ensure source code security properties of Java applications. It is
demonstrated in a case study on a simple personal password manager. In case of
such an application the ensuring of security is one of the most important goals.
We present the possible threats connected with the current state of the code and
its possible future extensions. This investigation is further accompanied by a
presentation on how these threats can be controlled by JML specifications and
ESC/Java2.

1 Introduction

Security sensitive applications require a thorough analysis of their security properties.
In order to assure the high degree of security of an application, the software industry
uses the techniques such as careful design and testing.

Another way to ensure the high quality of the source code is to use some tool
supported way of ensuring additional properties of the code. It is usually based on
the static examination of the code structure and interdependencies. These techniques
require difTerent amounts of additional human labour. The least costly ones are those
based on finding error prone coding patterns (PREfix [1], FindBugs [2]) and can be
used to enforce certain coding guidelines. The more laborious techniques like static
typing (Splint [3], JFlow [4] etc.), extended static checking (ESC/Java [5] and its suc
cessor ESC/Java2) and model checking (Bandera [6]) require more human effort. They
rely on the source code annotation that instructs tools how to conduct the verification.
The conformance of the source code to the annotations is subsequently automatically
proved. The additional work allows to discover less obvious bugs and provide ad
ditional documentation which allows to better express and enforce the design decisions
done by the designers of the systems. The most laborious techniques are the ones which
involve the full formal verification of systems (Jack [7], Loop [8] etc.). They require
both additional annotations with detailed specifications and construction of a proof that
the code matches the specifications. The latter task is the most time consuming one.

This work was partly supported by KBN grant 3 TllC 002 27 and Sixth Framework
Programme MEIF-CT-2005-024306 SOJOURN.

Phase use the following format when citing this chapter:

Schubert, A., Chrz^szcz, J., 2006, in IFIP International Federation for Information Processing, Volume 227, Software
Engineering Techniques: Design for Quality, ed K. Sacha, (Boston: Springer), pp. 337-348.

www.manaraa.com

338 Aleksy Schubert, Jacek Chrzqszcz

In this paper, we focus on the appHcation of the extended static checking. This
method is one of the static verification methods that presents certain trade-off between
no annotation effort techniques like FindBugs and full functional verification systems
like Jack or Loop. The extended static checking rehes on additional annotations in the
source code and offers automatically generated proofs that the source code conforms to
them. This allows to express more complicated properties of the code, however the
strength of this method is limited by the abilities of the provers employed.

The annotations used in this work are expressed in the Java Modelling Language
(JML [9]). JML is a specification language which is supported by several, actively
developed tools [10]. It is grounded on solid foundation of numerous scientific papers
that discuss its design [11] and specific constructs e.g. [12,13]. It is based on the
standard notions such as pre-, post-conditions, invariants etc. in the style of Design by
Contract [14] (see Section 4 for more details).

The JML annotations allow to smoothly scale the development process of the Java
source code from Ughtweight specification annotations, that for instance specify simple
properties like non-nullness of references, up to full-fledged functional specification.
In the case study, JML served to describe additional requirements for the source
code which should diminish the chances that uncontrolled exceptions are thrown (it
is impossible to prevent JVM errors using these techniques) and that the sensitive
data, like passwords or relations between passwords and computers, will leak in an
uncontrolled way.

In order to enforce the properties expressed in JML, an extended static checking
tool ESC/Java2 was used [15]. ESC/Java2 is the successor of ESC/Java developed in
Compaq [5]. This tool takes JML annotated Java source code and reports inconsistencies
between the specifications and the code. This is done by constructing verification
conditions which are subsequently checked against a mathematical model of the
Java source code. The verification process is done by a first-order logic prover
Simplify [16]. The model is an approximation of the real program so certain kinds
of errors are not captured (for instance the checker does not take into account
integer overflows). Still, it allows to discover many inconsistencies in the program
design.

It is worth mentioning that the C# platform has an specification language Spec#
[17] analogous to JML and a verification tool Boogie [18]. In this light, the general
conclusions from the paper may be also applied also to these tools.

The specification and verification techniques based on JML were applied in
the context of JavaCard applications [19]. The aim of this research is to show the
applicability of these tools and methods to ensure the high quality of the resulting
source code in applications beyond the context of JavaCard. We present here a
small security sensitive Java application Passwords (Section 2) and the analysis
of possible threats for the application (Section 3). After that we demonstrate the
annotation techniques used to prevent the threats (Section 4), and then the discovered
inconsistencies in the source code (Section 5). We sum up the paper with a description
of encountered difficulties in using of the tools (Section 6) and general conclusions
(Section 7).

www.manaraa.com

ESC/Javal as a Tool to Ensure Security in the Source Code of Java Applications

2 The Passwords application

339

Functionality The application is a simple password manager similar to the ones used
in web browsers. Its GUI has two tabs. The first one allows to add new password
entities to the application, the second allows to associate passwords with computers. It
is impossible to delete the entries. The access to the whole application is protected
by a single master password. The user is allowed to see directly the connections
between computers and the numerical identifiers of passwords (see Fig. 1) He can also
temporarily see the actual password by clicking the right mouse button on its numerical
identifier. As soon as the button is released, the password disappears.

MiiiaiitMiiiiiiiiMiii i i i i i i i i l
File

Passwords ' Computers
.Newest ttasswoed; 2
'us t used password: 2
Used puswotds: 1 2

Add password

Help Flic

Pass^vords Computers '

The newest pass number. 2

; _ Cotnputcr
eya
ear

Add computer

Lasi password
1

'2

Fig. 1. The two tabs of the Passwords application. The first one presents the interface for adding
passwords, the second one presented the interface for adding computers and relations between
computers and passwords.

The internal structure The application is a typical three-layer application (see Fig. 2).
The first layer is a user interface which allows to add information on computers and
passwords. The second layer is a communication layer with the permanent storage that
keeps the information. The third layer is the storage. The current implementation uses a
standard file as the storage. This can be changed by reimplementation of one class.

Storage
o
Wi
o

;.g
o <a
U

5
o

User

o

Fig. 2. The basic structure of the Passwords application. It consists of three layers: the GUI that
interacts with the user, the logic that provides the interface between the GUI and the data storage
and the data storage.

The most important classes and interfaces of the application are:

- Main Window which implements the GUI layer of the application,

www.manaraa.com

340 Aleksy Schubert, Jacek Chrzqszcz

- PasswordsLogicIntf which is the interface that abstracts the connection between the
GUI and the layer of the logic,

- PasswordsFileLogic which is an implementation of PasswordsLogicIntf that works
on files,

- Password and Computer are the classes that package the sensitive information
concerning passwords, computers and relations between them; in particular the
Computer class contains the collection of passwords associated with it.

Other informations on the programme The whole application was developed in Java
1.4 with detailed JavaDoc documentation. It consists of 23 classes. The overall code
size of the application is 4433 lines of source code, including all the comments and
JML specifications. The JML specifications constitute 482 lines of the comments.
The number of physical source code lines, as generated using David A. Wheeler's
'SLOCCount' is 1650.

Additionally, this software development was supplemented with extension of the
specifications for the Java standard library classes. The specifications are necessary
when the verification with ESC/Java2 is conducted. This exertion resulted in additional
36 specification files and modification of 10 existing specification files. We added 133
lines of JML specifications to the existing specification files. The 36 specification files
that were added amounted to 9838 lines, 97% of which was automatically generated by
the JML Eclipse plug-in. The code of the application together with the specifications is
available from http://www.mimuw.edu.piralx/Passwords.tgz

3 Threat analysis

Extent of the analysis In this work, we focus on the source code security. Therefore
we omit all the considerations connected with the security of the particular data
representation that is used in the file and all possible threats connected with the social
security attacks. We are aware that the solution used presents certain trade-off between
security and both the usability and the applicability. The application gives a controlled
access to a single asset, namely password.

Ways to acquire or destroy the asset The basic threats in the application is
that somebody who is not allowed will compromise the confidentiality, integrity or
availability of the password data.
1. Confidentiality

a) the assets can be sent to an uncontrolled channel:
i. the password may be frozen in GUI on the screen (due to a hardware

failure, due to a dead-lock in the operating system kernel etc.)
ii. the assets can be printed out clear-text on a console device,

A. the asset can be printed out as a part of an exception message or a
stack trace,

B. the asset can be printed out as a result of a debugging message,
C. the asset can be printed out as a result of wrong aliasing in the

application,
D. the asset can be printed out as a result of public access to some fields.

www.manaraa.com

ESC/}aval as a Tool to Ensure Security in the Source Code of Java Applications 341

iii. the assets can be sent out clear-text using an Internet connection, (the ways
to gain the asset in this case and in the subsequent ones are similar to the
ones in the point l.(a))ii),

iv. the assets can be sent out clear-text to another application using the
operating system communication facilities such as shared memory,

V. the assets can be stored clear-text in a file out of control,
vi. the assets can be sent to another application using memory allocation or

swapping;
b) the information on assets can be leaked to an uncontrolled channel:

i. the assets can be revealed as a result of differences in behaviour (e.g.
longer waiting time for longer passwords),

ii. a result of a computation (e.g. all letters of the password XOR-ed with
"a") can be sent to an uncontrolled channel;

c) the information on assets can be revealed by a side channel (e.g. the sound of
the cooling fan on the processor);

d) the assets can be acquired by a person who has access to the system administrator
privileges.

2. Integrity
a) the password can be overwritten by a malicious extension of the application;
b) the relation between computer and can be changed by such an extension.

3. Availability
a) the password file can be destroyed by a malicious extension of the appUcation;
b) the password can be destroyed by a malicious extension;
c) the appUcation can be hung by a malicious extension.

In this research we focused on' the ways to prevent attacks that exploit bugs in the
software. That is why we look mainly at the leaking of passwords from the appUcation
which can be prevented by the way the source code is written. We limit our further
considerations to cases (l.(a))ii)-(l.(a))v), (b)), (2.), and (3.).

4 Employed formal techniques

4.1 JML constructs used in the case-study

We present here the most important features of JML which are used in the case study
to prevent the coding errors that might lead to the cases of information compromise
described at the end of Section 3.

JML assertions are written in the source code comments of a special form. The
comments which can span several lines have the form /*@ ... @*l while one-line
specifications follow ll@.

Ghost fields enable a thorough analysis of the information flow and type properties.
Variables of this kind are auxiliary fields which are not used by the implementation,
but occur in specifications. We can declare in the Object class a field which allows to
mark objects as confidential or non-confidential:

II® ghost public boolean isConfidential = false;

www.manaraa.com

342 Aleksy Schubert, Jacek Chrzqszcz

Similarly, the container classes can have a ghost field which indicates the type of the
elements gathered in it:

//@ instance ghost public "TYPE elementType;

Another example of the use of the ghost field is the variable which keeps track of the
aliasing of objects. We can declare owner of each object

//@ ghost public Object owner;

and delegate to the owner the right to modify the state.
The mere declaration of the fields does not ensure that particular code property is

maintained. We need additional mechanisms which are described hereafter.
Object Invariants express properties which should hold at the entry and exit to each
method. The invariants serve as a device to describe the meaning of the consistency of
the object data. They can express for instance that certain variables are set to certain
values, e.g.

//@ invariant passwords.isConfidential == true;

Object invariants allow to specify that the contents of the passwords container class
Computer is confidential. They also allow us to specify that collections contain particular
kinds of objects (e.g. that the collection of passwords contains objects of the class
Password; Java 1.4 does not guarantee this in its type system) as well as that certain
data was initialised during the lifetime of an object, and that certain data is not shared
between different objects. These specifications allowed us to diminish chances that the
data from the confidential container would leak, that uncontrolled exceptions would
occur, and that certain data would be shared in an uncontrolled way.

Pre- and postconditions Each method in Java code is supposed to be called in
certain context i.e. it assumes that certain fields of its object are appropriately set, that
the parameters come from specific ranges (e.g. between 0 and 10), that a particular
parameter has a particular type, and in general that certain relations hold between the
input data and/or the fields of the object. Here is an example of such a precondition

/*@ requires Imstring.isConfidential && mstring.owner == this ...

private ... String decrypt(..., String mstring, ...)

In this case we specify that the method decrypt requires the parameter mstring to be
not confidential (for instance we may impose the policy that we decrypt only data
which is publicly available).

Similarly, it is usually the case that a method guarantees that certain fields are set
or that a certain relation between the object state, result and the input data holds. This
is done by means of postconditions. We can for instance specify that the result of the
decrypt method is confidential and should be protected from exposure in the code of
the application.

/*@ ... ensures "result.isConfldential && "fresh("result) ...

private ... String decrypt(.... String mstring, ...)

www.manaraa.com

ESC/Javal as a Tool to Ensure Security in the Source Code of Java Applications 343

In this case we specify that the method decrypt requires the parameter mstring to be
not confidential (we impose the policy that we decrypt only data which is anyway
public). Additionally, we require the result to be fresh i.e. that the resulting object is
created inside the decrypt method. This solution is one of the way to prevent from
uncontrolled aliasing of the confidential data.

Control over exceptions The exception mechanism used in Java is sometimes
insufficient. It is permitted to omit runtime exceptions in throws declarations. ESC/Java2
signals when the runtime exception thrown is not declared in the throws clause.
Additionally, the JML specifications allow to describe exactly the conditions which are
guaranteed to hold after an exception is raised.

/*@ ... signals (EncryptionlmpossibleException el)
@ mstring.lengthO % 2 == 1
@ mstring.lengthO i2;
@*/

private ... String decrypt(... String mstring, ...)

In this example, when the EncryptionlmpossibleException is raised, the decrypted string
has improper format. Here, this means that either the string is too short or has odd length.

JML allows also for other means to control the occurrence of exceptions. In
particular, it allows to supplement a variable declaration with an information on whether
the variable is allowed to be null. This enables fine-grained control over the occurrence
of the NuUPointerException. This feature is visible for instance in the way the decrypt
method is annotated:

private /*@ non'null @*/ ... String decrypt(
/*@ non'null @*/ String mstring,
/*@ non'null @*/ String pasSwordsPassword2)

In this case, we allow the decrypt method to be called with non-null parameters only.
This method also can only return non-null values. ESC/Java2 checks that whenever the
method is called, the actual parameters are non-null. It can also exploit the information
that the result is non-null.

We also decided to protect the application against the type-cast errors. The main
problem occurs when the collections are used as the operations that return elements
of collections usually return objects of the class Object which should have to be
subsequently cast to actual types. In JML, this behaviour can be modelled by a property
of the collection which contains the elements:

/*@ invariant passwds.elementType == "type(Password) && ...

In this case, we enforce that the type of elements in the passwds collection is always
equal to the type Password.

Specifications of the standard library One more crucial JML feature is its ability to
separate the specification from the actual implementation. In this way, we can describe
the behaviour of the classes in the standard Java API without modification (or even
access) to the actual source code. In this case study, we had to specify the behaviour
of the methods in the standard library with regard to the newly added ghost field
isConfidential. 'We also had to add general specifications for some classes which have
not been specified yet in the original specification bundle shipped with ESC/Java2.

www.manaraa.com

344 Aleksy Schubert, Jacek Chrzqszcz

4.2 The use of ESC/Java2 in the case-study

In order to verify the conformance of the source code to the specifications, we used the
extended static checking tool ESC/Java2. This tool translates the JML specifications
together with the source code to formulae in the first-order logic and feeds them into
the Simplify theorem proven This prover verifies if there are logical inconsistencies
in the formulae, in particular it is able to discover counterexamples to the specified
specifications.

The light-weight approach to apply this kind of tool is just to provide some
specifications to the source code depending on the development needs (for instance one
may decide to introduce non'nuU annotations only during the development of the
application and then afterwards to introduce more thorough annotations whenever a
bug is encountered) and after an initial analysis, treat the output of the tool as a false
positives list. This list is archived and whenever new features are introduced or bugs
fixed the developers can focus on the difference between the original report and the
newly generated one.

In this case study, we took another approach. We wanted to get rid of all the warnings
to gather as many information on bugs or on inconsistencies in the code as possible.

5 Discovered code inconsistencies

We started the work on the application without significant knowledge of the JML and
JML tools like ESC. Both authors of the source code give programming courses,
especially Java programming courses so one may assume that the quality of the initial
code was at least at the level of an average graduate.

In the course of the code annotation and analysis we discovered the following code
flaws:
• We discovered that certain standard library methods we used throw the runtime
exception HeadlessException which is not reported in the throws clauses. In order to
make sure that the messages in these exceptions do not compromise any sensitive data,
we introduced an explicit reporting on exceptions of this kind throughout the code of
the application.
• We introduced new exceptions to the application to handle erroneous situations
which were omitted during the initial development of the source code.
• We found that a printing of confidential data for debugging purposes had been left in
the code.
• We discovered numerous lacking null checks.
• We discovered a few lacking sanity range checks for the data used.
• It turned out several times that we expected the standard GUI Ubrary Swing to return
non-null results whereas in fact they do not. This was especially appealing as in order
to discover that it was really the case that we had to analyse a few subsequent internal
calls in the Java standard library.
• We removed methods which leaked references to the content of internal security
sensitive information. This was a flaw of the initial design. We decided to remove the
methods as they were not used in the solution, but could be exploited in attacker code
to compromise integrity and/or availability of the passwords.

www.manaraa.com

ESC/Javal as a Tool to Ensure Security in the Source Code of Java Applications 345

• We also gave up one design solution which was connected with the use of interfaces.
We used in one class a field of an interface type. The problem with the interface types
is that one can extend an existing class to be an implementation of the interface. In this
situation, one can obtain very troubling aliasing possibilities which were suggested by
the tool. As our focus was on security, we decided to sacrifice the ease of extendability
with regard to the issue for a more secure solution when the possibility of the future
aliasing is diminished.
• The application contains a graphical user interface. The GUI library is a very big and
complicated piece of code. In the course of the case study, it turned out that we made
many assumptions on the data exchange between the application and the GUI library
during the development stage. Thanks to the tool support we were able to introduce all
the necessary checks concerning the data that comes from the GUI library to prevent
uncontrolled break down of the application due to bugs or unknown features of the
GUI code. It turns out that these additional checks are especially important since the
Swing library works partly by means of registering objects for callbacks. As some
asynchronous event may trigger such a callback in the middle of the construction
process for a bigger object, such a sanity checks may be critical for the secure execution
of the resulting application.

6 Encountered problems and deficiencies of the tools

Additional annotation support ESC/Java2 is a tool that checks the conformance of the
specifications with the existing source code at compile time. The tool enforces that the
process of annotating is local — the specifications that describe the intent for the
current piece of code are in its close vicinity. This feature imposes that specifications
serve as the documentation for the code. However, some design decisions in one
place dictate some solution in a distant place. For instance, requiring non-nullness for
certain field may require or imply some other fields to be non-null. What is more, such
conscious design decisions may be contradictory. The process of co-ordination for
non-null annotations is very tedious and it is sometimes diflicult to figure out which
real design decisions led to particular contradictions. This process, however, could be
automated using known information flow techniques similar to JFlow [4]. A similar
remark can be made for the confidentiality annotations that we proposed.

Annotation overhead The annotation process is quite labour intensive. It resembles
to some degree providing another implementation of the existing functionality. Still, the
descriptions contribute to fewer lines than the real code. In fact, they do not describe
the same functionality of the code, but only some of its additional aspects.

Specifications of the standard library Another deficiency of ESC/Java2 is that the
standard Java library is not completely covered with specifications. The most basic
classes in java.lang or java.util have already been specified in great detail, but there are
no specifications for GUI API. We had to provide our own specifications there. This
deficiency, however, has one advantage. In order to specify them, we had to analyse the
code of the methods which were interesting for us. This revealed that in many cases the
specifications provided in the Sun JavaDocs are not sufficient for security purposes.

www.manaraa.com

346 Aleksy Schubert, Jacek Chrzqszcz

Human error in specifications There is no guarantee, that the specifications that are
written in the application are 100% correct. The process of writing the specs is as
error prone as the usual source coding. Still, the double description of the programme
behaviour increases the chances that a particular behaviour is the result of a conscious,
well founded decision of a programmer or designer.

Bugs and incompleteness of the tools Similarly, there is no guarantee that the
tool we used is bug free. Actually, during the course of the case-study a few bugs in
ESC/Java2 were discovered. These bugs increased the time needed to develop the
whole project. Moreover, the documentation of ESC/Java2 says explicitly that the tool
is not sound with regard to the Java semantics. In particular, it does not handle the
integer overflow and all memory management problems connected with the execution
of a Java programmes. Still, the work with the tool allows to increase the confidence
that the application has fewer bugs. The actual apphcation of the tool in the industrial
context should be coupled with the common testing techniques.

Problems with modelling in JML The proposed solution to trace the information flow
of the confidential data has one deficiency. It allows to trace the flow of objects only
and is incapable of tracing the information flow of data encoded as primitive values. We
found a workaround for that. We generated a list of method calls in the application and
whenever a method with primitive types in parameters was called we inspected tlie code
by hand. This however is not satisfactory and in order to avoid that we face an strong
design constraint — the security sensitive applications which are to be checked with
tools like ESC/Java2 should wrap the primitive types with objects like Integer or Float.

Another deficiency is difficulty in describing the content of the current stack in
JML. This is important when one describes the result of the message printed out after
an exception is thrown. It is possible to model this in the current version of JML, but it
incurs a high specification overhead.

7 Conclusions

The techniques employed in this case study are still very time consuming and additional
tool support to avoid manual annotation of all the information flow paths would be of
great value here. However, they are capable of pinpointing certain bugs and source code
deficiencies. Assuming that the specification process is similar to the programming and
that the verification process using ESC/Java2 is similar to debugging, we can estimate
the time needed to develop the annotations that match the source code to be 24 days
(assuming typical programming efficiency 20 lines per day).

Although the methods do not give the guarantee of full security, they provide a
certain standardised level of assurance that the source code is well written with regard
to the assumed threat analysis. They can be used in areas where the high cost of their
applicability can be matched with the high cost of possible design or implementation
flaws. Moreover, it is usually the case that the reading of the specifications is easier
than the reading of the actual source code, as they provide certain abstraction of the
functionality. They also give a stable representation of the expected functionaUty while
the implementation is free to change. In this way, these techniques can also contribute
to more stable maintainability of the source code.

www.manaraa.com

ESC/Java2 as a Tool to Ensure Security in the Source Code of Java Applications "iAl

References

1. Bush, W., Pincus, J., Sielaff, D.: A static analyzer for finding dynamic programming errors.
Softw. Pract. Exper. 30(7) (2000) 775-802

2. Hovemeyer, D., Pugh, W.; Finding bugs is easy. In: OOPSLA'04 Companion, ACM Press
(2004) 132-136

3. Evans, D., Larochelle, D.: Improving Security Using Extensible Lightweight Static Analysis.
IEEE Softw. 19(1) (2002) 42-51

4. Myers, A.: JFlow; Practical Mostly-Static Information Flow Control. In: POPL. (1999)
228-241

5. Flanagan, C , Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.: Extended
static checking for Java. In: PLDI '02; Proceedings of the ACM SIGPLAN 2002 Conference
on Programming language design and implementation. New York, NY, USA, ACM Press
(2002) 234-245

6. Corbett, J.C, Dwyer, M.B., HatcliflF, J., Roby: Bandera: a source-level interface for model
checking Java programs. In: ICSE '00, ACM Press (2000) 762-765

7. Burdy, L., Requet, A.: Jack: Java Applet Correctness Kit. In: Gemplus Developer Conference
2002, Singapore (2002)

8. van den Berg, J., Jacobs, B.: The LOOP Compiler for Java and JML. In: TACAS 2001:
Proceedings of the 7th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, London, UK, Springer-Verlag (2001) 299-312

9. Leavens, G.T., Baker, A.L., Ruby, C: JML: A Notation for Detailed Design. In: Behavioral
Specifications of Businesses and Systems. Kluwer (1999) 175-188

10. Burdy, L., Cheon, Y., Cok, D., Ernst, M.D., Kiniry, J., Leavens, G.T, Leino, K.R.M., Poll,
E.: An overview of JML tools and applications. Software Tools for Technology Transfer
7(3) (2005) 212-232

11. Leavens, G.T., Baker, A.L.: Enhancing the Pre- and Postcondition Technique for More
Expressive Specifications. In: FM '99: Proceedings of the Wold Congress on Formal
Methods in the Development of Computing Systems-Volume II, London, UK, Springer-Verlag
(1999) 1087-1106

12. Ruby, CD.: Safely creating correct subclasses without seeing superclass code. In; OOPSLA
'00: Addendum to the 2000 proceedings of the conference on Object-oriented programming,
systems, languages, and applications (Addendum), New York, NY, USA, ACM Press (2000)
155-156

13. Chalin, P.: Improving JML: For a Safer and More Eflfective Language. In Araki, K., Gnesi,
S., Mandrioli, D., eds.: FME 2003: Formal Methods, International Symposium of Formal
Methods Europe. Volume 2805 of LNCS., Springer (2003) 440-461

14. Meyer, B.: Object Oriented Software Construction, Second Edition. Prentice Hall (1997)
15. Cok, D.R., Kiniry, J.R.; Esc/Java2: Uniting ESC/Java and JML; Progress and issues in

building and using ESC/Java2 and a report on a case study involving the use of ESC/Java2
to verify portions of an Internet voting tally system. In Barthe, G., Burdy, L., Huisman, M.,
Lanet, J.L., Muntean, T, eds.; Construction and Analysis of Safe, Secure, and Interoperable
Smait Devices; International Workshop, CASSIS 2004. Number 3362 in LNCS, Marseille,
France, Springer (2004)

16. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking. J.
ACM 52(3) (2005) 365-473

17. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: An overview. In:
Construction and Analysis of Safe, Secure and Interoperable Smart devices (CASSIS).
Number 3362 in LNCS, Springer (2004) 49-69

www.manaraa.com

348 Aleksy Schubert, Jacek Chrzqszcz

18. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A modular
reusable verifier for object-oriented programs. In: Fourth International Symposium on
Formal Methods for Components and Objects (FMCO'05), Post-Proceedings. LNCS (2006)
to be published.

19. Breunesse, C , Cataiio, N., Huisman, M., Jacobs, B.: Formal methods for smart cards: an
experience report. Science of Computer Programming 55 (2005) 53-80

www.manaraa.com

Formalizing Software Refactoring in the Distributed
Environment by aedNLC Graph Grammar

Leszek Kotulski, Adrian Nowak

Institute of Computer Science, Jagiellonian University
Nawojki 11, 30-072 Krakow, Poland

kotulski@agh.edu.pl, nowaka@ii.uj.edu.pl

Abstract. Being a commonly used technique to enrich the software structure,
refactoring - as well as any software changes performed every day - still lacks
a good formal definition. Especially in the distributed environment there is a
great need for a better mechanism allowing to avoid conflicts and properly
merge the changes introduced by different developers. In this paper we continue
our project of a core of distributed environment based on graph repository,
which helped us to defeat and significantly decrease problems of refactoring
conflicts. We focus on technical aspects of the environment and present precise
description of the refactorings with the help of aedNLC graph grammar and
graph transformation mechanisms. We also discuss some other properties of the
graph repository including its abilities to store dynamic software description.
Presented approach is based on UML notation, however it could be easily ex
tended for any object-oriented language. The graph repository concept alone
could lead to a model of a modem integrated software development environ
ment.

1 Introduction

Modifying and maintaining existing software has become an important pait of the job
of software developers. Any changes made to the software (code or model) should
contribute to this software evolution and maturity. Some operations might change the
behavior of the software while others just modify the structure. These changes which
improve object-oriented software while preserving its behavior are well known as
refactorings [1,2]. When applied properly, refactorings help in many ways to improve
not only the software itself [1] but also the whole process of software development
and maintenance.

Nowadays there exists a number of tools to support such operations for many dif
ferent programming languages, e.g. Refactoring Browser [3] for Smalltalk or Eclipse
[4] for Java. A great deal of research in this area was conducted, but not much fo
cused on formalizing the refactoring and its properties. Furthermore, the distributed
environment, used naturally in case of any application developed by a team, was not
taken into account. We try to deal with both these issues in the paper - formalize
refactoring in the distributed environment - since it is essential to take into account all
the factors which may have any influence on the refactoring operation.

Please use the foUmving format M'hen citing this chapter:

Kotulski, L., Nowak, A., 2006, in IFIP International Federation for Information Processing, Volume 227, Software Engi
neering Techniques; Design for Quality, ed. K. Sacha, (Boston; Springer), pp. 349-360.

www.manaraa.com

350 Leszek Kotulski, Adrian Nowak

As pointed in [5, 6, 7] many problems appear when two developers decide to make
refactorings, in a parallel way, on the same software. As a very simple example, even
an Encapsulate Variable and a Move Variable refactorings applied to the same vari
able by different developers cause a structural conflict, due to lost of the variable
identification in the system [7].

As a formal framework, we use graph-based representation, utilizing Mens's nota
tion [8]. However we extend the approach by introduction of the graph repository
concept [7] and online graph transformations controlled by aedNLC graph grammar
[9]. We compose refactorings from simple grammar productions, and provide atomic
ity by a special execution environment. This formalism allows us to describe and syn
chronize refactoring operations and also - under some conditions - exclude many
conflicts.

In the next section of the paper we present a concept of graph representation of the
software structures, where refactorings are represented as graph transformations. Sec
tion 3 overviews appearance of refactoring conflicts in a collaborative environment
and some other common refactoring problems specific for team software develop
ment. Section 4 introduces formal definitions. Section 5 describes details of represent
ing refactorings as aedNLC grammar productions. Section 6 shows how the refactor
ing conflicts can be automatically excluded using this approach. Some other
properties of the repository are also discussed. Finally, section 7 concludes our work
and proposes some future research.

2 Software as a graph

An idea of representing software as a graph is very reasonable and quite natural,
hence commonly used in research [8, 10] and tools [4]. Compared with tree based
representations it does not only allow to represent static relations between program
elements but also dynamic relations such as method call, variable access and late
polymorphism binding.

2.1 Metamodel

A graph representation of all allowed connections between potential software compo
nents as well as all necessary attributes is known as a metamodel. Formally it is also
called a type graph [11, 8]. An example of a simplified metamodel for object-oriented
programming language (or UML class diagram) was presented in [7] and is now ex
tended to distinguish method definitions - following Mens [8] - see figure 1.

Graph nodes are labeled by: "Class" for nodes representing classes (or types),
"MethodDef for method definitions, "Method" for method signatures, "VariableDef'
for variable definitions, "Variable" for variable signatures and "Parameter" for
method parameters. The separation between the definition and the method or variable
itself is crucial as we have to provide a possibility to introduce many definitions of a
single component within a hierarchy (due to late binding and polymorphism). We use
the UML notation, relying on the composition (depicted as filled rhombi) as the most
suitable for representing strong inclusion between main and part components - further

www.manaraa.com

Formalizing Software Refactoring in the Distributed Environment 351

called a « m e m b e r » relation. Other relations are represented by attributed refer
ences. Multiplicities of the relations are written along edges as number, range, or an *
(asterisk) in case of being not strictly defined. We do not interfere with methods bod
ies (as [8] by introducing an expression component) - this is another hierarchy level
(after package and class levels) in hierarchical graph which we normally use as a full
metamodel - not essential to present in this paper. The 0CL[12] in turns allows us to
express constraints to exclude illegal components and relations in the instance graph,
that is for example exclude two methods or two variables with the same signature
within a class.

Parameter

-name: art ng
« type »

->

Class

-name: String
-visibility: String

«<inliei1tance»:»

l < - ,
^<tvpe»

«parameter:» «type »

Method

-name: String
<loolcup>

JM.
+ <«membei>>

«membei>»

MethodDef

-viabHity: String
<upclate>> • ,

« «aixess>->

Variable

-name: String <lookup>» VariableDef

•visil>liity: String

Fig. 1. Simple metamodel.

For better understanding of the metamodel let us take a look at its sample instance
(Figure 2). Now we operate on particular components instances with given names and
attribute values.

Fig. 2. Example of the metamodel instance.

The relations "m is a member method of class C" or "v is a member variable of the
C" or "m calls n" can be expressed by a suitable node interconnection, presented ap
propriately by compositions and associations. A real example of Local Area Network
with program code and method definitions was presented in [8].

www.manaraa.com

352 Leszek Kotulski, Adrian Nowak

2.2 Refactorings

We assume that any changes made to the software will have one-to-one mapping in
side the software instance graph. The result of such changes might be very simple,
like a single attribute change, but can be also quite complicated like change to thou
sands of expressions appearing throughout the project.

An example of a Move Variable refactoring representation is depicted in figure 3.
There are two graphs describing the software fragment - before and right after the
transformation (as a result of applying a single grammar production or a whole set of
productions). Usually refactorings can be processed only when particular precondi
tions are met [2, 10] (here the Move Variable can be applied when the variable called
"v" is not already defined within the class named "D").

Class

-name:=C
- visibll ity: ̂ protected

I
-name:=D
-visibiiity:=publlc

VariabieOer

-¥iability:=public

Move Vaiiabia

piec:vnotin D

Class

-name:=C
-yiabil ity: =protectecl

Class

-name:=D
-¥ia'iibllitv'=public

I
VariableDrf

-visibility:=pubiic

Fig. 3. Move Variable refactoring and its precondition - v is not in D.

3 Distributed environment

Software is usually developed by teams, which members are in different locations.
These developers usually work in their own local environments on their own copies of
the software, without any knowledge about modifications made by others - and this
may cause the problems considered below.

3.1 Refactoring conflicts

The main problem of applying changes in collaborative environment are conflicts,
usually detectable quite late, in the phase of software merging. These could appear as
syntactic, structural or semantic conflicts [6] - the first two types will be further con
sidered in the paper.

Let us get back to the example mentioned in the introduction. Suppose two devel
opers decide to make changes involving the same variable from the same class. One
of them perfonns the Encapsulate Variable refactoring (changing visibihty and adding
setter and getter methods) while another performs the Move Variable refactoring
(from the class named "C" to another named "D"). When, probably after a sequence
of other modifications, developers finally decide to share new versions with the rest

www.manaraa.com

Formalizing Software Refactoring in the Distributed Environment 353

of the team, the second developer should encounter a problem - conflicts will appear
in all places where the variable was accessed or updated. The issue is that when using
any of currently existing commercial tools (e.g. the Eclipse [4] with external version
control system like CVS) the source codes of all classes are sent as text. This way we
are able to detect only very basic conflicts, and often there is no possibility to avoid
them. If we just try to automate the merging, we may lose the result of one refactoring
or get two similar variables [7]. In consequence, quite frequently a developer has to
realize what was really modified and decide which operation should be accepted. In
many cases it might be even necessary to redo some operations. Moreover, sometimes
such decisions must be discussed with the rest of the developer team.

3.2 Graph repository

Number of conflict possibilities arise together with the number of changes being ap
plied. If we are able to imagine a sequence of refactoring operations on the same
piece of code or a group of such sequences, then it is easy to imagine that conflicts
number might increase dramatically'.

Further, when concerning large refactorings performed step by step even through
few days (and so interacting with many other changes, no matter how carefially
planed), it is easy to notice that a kind of long term control mechanism is necessary.

The mentioned mechanism should also support ordinary developers work, that is
provide possibihties such as undo the changes (including refactorings) or history and
version management.

Refactoring tools already utihze a full code description but currently all analysis is
done in complete separation from the rest of the distributed environment. We suggest
to utilize a graph repository, introduced by us in [7]. The internal graph describing
current state of the maintained software will be modified by a graph transformation
system [13] according to software changes. The term "graph repository" is used on
purpose, to put the emphasis on concurrent access to the graph. We assume that the
graph should give us a possibility of unique components identification. It is an in
stance of the metamodel and additionally may hold some technical attributes for bet
ter description and analysis of refactoring preconditions as well as performance is
sues.

4 Formal definitions

The solution presented in the paper is supported by an aedNLC graph grammar [9, 13,
14,15], so the basic properties of this grammar should be outUned.

Important issue here, not only applicable when considering distributed environment, is pro
viding a possibility of operation grouping in order to get better performance e.g. by gathering
preconditions or finding context once.

www.manaraa.com

354 Leszek Kotulski, Adrian Nowak

4.1 EDG Graph

The graph generated by grammar consists of nodes and directed edges; both nodes
and edges are labeled (its general properties are established e.g. a can node represent
class or method) and attributed (the individual components properties are defined e.g.
class name).

An attributed directed node- and edge-labeled graph, EDG graph, over Z and F is a
quintuple H = (V, D, E, T, 6), where:
V - is a finite, non-empty set of nodes, to which unique indices are

ascribed, defining the order within the set
E - is a set of attributed node labels
r - i s a set ofattributed edge labels
D - is a set of edges in the form of (v,(a,w) where w, v E V and }i e F
8: V—>2 - is a function, which labels the nodes.

For the metamodel presented in the section 2.1 we should have:
E = {"Class", "Method", "MethodDef', "Variable", "VariableDef', "Parameter"}
F = {<inheritance>, <member>, <type>, <parameter>, <call>, <access>, <update>,
<lookup>}

4.2 Graph transformation

Any graph grammar production P is represented by a left-hand (L) and a right-hand
side (R) graphs and an embedding transformation E, thus P=(L, R, E). Modification of
the graph H, describing a current state of the system, is made by applying graph
grammar production. First, a subgraph of the H, that is homomorphic (by a homo-
morfism h) to L is localized (so the subgraph is equal to h(L)), next h(L) is removed
from H and the right-hand side graph R is placed instead; the embedding transforma
tion E specifies a way in which the nodes of the graphs R and H-h(L) should be asso
ciated by edges. The left-hand and right-hand sides of productions could be easy pre
sented graphically, but the embedding transformation is rather described using a
special notation.

The equation E(y, in, v) = {(Q, (X, n), \x, in)} is interpreted as follows: every edge
labeled by "y" and coming into (thus "in" or "out" will be used to show a direction)
the node h(v) within the graph H should be replaced by an edge connecting a node
(w) labeled by "Q" from the right-hand side graph R with a node labeled by "X" from
the rest of the graph (H-h(L)) on condition that the formula 7t is fiilfilled (for the
nodes belonging to this edge). Newly introduced edge will be labeled by "^" and will
come into the node w. In order to simplify the notation, we assume that the dangling
edges (not described by E) will be connected to a node (inside right-hand side graph
R) with the nodes designated as follows:

• if the removed node (ueL) appears in the right-hand side of production (i.e. exist
node with the same index as u) the edge will be connected to this node

• otherwise the edge will be connected to the least node inside R with the same la
bel as u.

The above rule we will call COPYREST embedding transformation rule.

www.manaraa.com

Formalizing Software Refactoring in the Distributed Environment 355

The homomorphism used have to be unambiguously defined, so when the left-
hand-side graph of the considered production consists with a single node VL then we
assume the homomorphism is defined as a unique homomorphism from the node VL to
the node for which the production is applied that is v. Note that, in such a case the
embedding transformation is equivalent to the one introduced in [9,16].

Application of productions should be done in context of the repository graph H by
a special Derivation Control Environment (DCE). The proposition of DCE usage is
based on previous solutions that were utilized to control the software allocation proc
ess in a distributed system [14] and to describe a behavior of the mobile agent systems
[13].

The DCE services developers and system requests; when a request appears either a
waiting control thread is activated or a new thread of control is created for starting
point.

(Walt,)

Fig. 4. Derivation control environment.

The DCE can be interpreted as a diagram (see Figure 4) connecting control points
(the dotted circles) inside which a synchronizing fiinctions Waitk (if exist) and a selec
tor Ilk are sequentially evaluated. The synchronizing function Waitk is evaluated bas
ing on the current graph value and the queue of requests (that have to be sent to the
DCE). If this evaluation fails then the control point activity will be delayed until the
environment changes (i.e. a new request appears), otherwise the selector Ilk is evalu
ated (also basing on the same elements) and designates the proper transition. The
transition not only moves the activity to the next control point but also both a seman
tic function and the graph grammar production (pointed out as edge attributes - SFj
and Pj) are perfoimed. The semantics function (associated with the transition):

- adds new request to the order queue (requesting some actions from refactoring sys
tem),

- removes the request, which is serviced from the queue,
- evaluates parameters of the right-hand side graph of the production.

When the production F is applied to the current graph H a new graph H' is created
in a way defined by the transformation rules of the graph grammar associated with
this derivation control diagram.

Introduction of the concurrent threads of control simplifies the DCE description,
however to assure proper data modifications we have to introduce a general synchro
nization rule: each thread of control has exclusive access to the data representing

www.manaraa.com

356 Leszek Kotulski, Adrian Nowak

graph H and to the requests queue in the period beginning fi'om Wait^ evaluation to
the moment when a new graph H' is created.

5 Refactorings as aedNLC grammar productions

As described in the section 2.2 any refactoring corresponds to the graph repository
transformation. To introduce such transformation we need to be able to apply an ade
quate grammar production. However, due to restrictions on the graph, graph grammar
and performance issues, we will usually need several productions to define a single
refactoring. For this we will further utilize the derivation control mechanism de
scribed in the previous section. In order to easily describe refactorings we will use pa
rameterized productions - to locate nodes of the left-hand side L of production by
graph indices and to avoid ambiguous definition of the homomorphism h. For sim
plicity, due to one-one mapping, we will also incorporate all information from "Vari-
ableDef and "MethodDef nodes into "Variable" and "Method" accordingly. Let us
introduce productions for considered refactorings.

5.1 Move Variable

The Move Variable refactoring should take effect not only in origin (C) and destina
tion (D) classes but also in all places where the variable was updated or accessed (e.g.
in Java by adding new imports or class prefixes). Fortunately this information is asso
ciated with VariableDef node, so embedding transformation consist only of the
COPY_REST rule.

An adequate part of the derivation control diagram is presented in Figure 5. The
condition TLi corresponds to the Move Variable refactoring precondition that is "v is
not in D". The Move variable production Pmv is the same as the transformation shown
previously in Figure 3.

Stait

Stop

Fig. 5. A part of the appropriate DCE for MoveVariable(v, C, D).

5.2 Encapsulate Variable

The Encapsulate Variable should make the considered variable v a private, add get()
and set() methods as well as introduce calls to these methods in all places where the
variable was accessed or updated. We can provide three separated productions - two

www.manaraa.com

Formalizing Software Refactoring in the Distributed Environment ?,S1

for introducing the methods (Figure 6a, 6b) and one for changing the variable attrib
ute (Figure 6c) - the sequence is controlled by dedicated DCE fragment (Figure 6d).
The embedding transformations are, accordingly:

Ei.(<access>, in, 2)) = {(Method, (Method, true), <call>, out)}

E2{<update>, in, 2)) = {(Method, (Method, true), <call>, out)}

E3 o COPY_REST

The condition Hi is checking whether the methods set() and get() already exist in
class "D", II2 is always true and lis checks if the variable is public (in case it is not no
production is applied).

1 : Class

-nameC
-viability:pt'Oteded

I =>
2 : Variable

-iiarae:v,
-visiliillypubilc

-name;C
-visibility: protected

I
•-¥lalii(ltyf|)MWio

1 : Class

-name:C
-viaisiiltyiproteded

1 « l t
2 : Variable

-iiaroe:v
-vlsibiilty:puplic

1 : Class

-iiame;C
-viability: protected

emBei>>

«access^>
3: IMhoA

-naine:aet
-vlalsility: public

1 «membei>>
2 : Variable

-name:v
-visiijility: public

«update>>
3 : nMliod

-name: set
-visiblily:publlc

Stop

1: Variable

-name:v
-visitallity:piivate

P3

=>

1 : Variable

-name:¥
•visibility: public

Fig. 6. EncapsulateVariable(v, C). a) production PI - introduces get() method, b) production P2
- introduces set() method, c) production P3 - changes the variable visibility to private, d) DCE
used to control application of these productions.

www.manaraa.com

358 Leszek Kotulski, Adrian Nowak

6 Graph repository idea revisited

Our approach supporting global refactoring consists of Graph Management System[7]
(GMS) and a few Local Refactoring Environments (LRE). The QMS maintains the
graph repository. Each of LRE performs the sequence of the following tasks:

• asking the GMS for searching a part of the graph associated with the refactoring
operation (and possibly, synchronize it with the others) - fmd_context request

• performing the refactoring operation basing on the code,
• infoitning the GMS that the refactoring operation has to be performed ~

Move_variable, Encapsulate_variable requests
• updating the code maintained by LRE on GMS demands.

The first task performed by the GMS is a simple semantic action of searching for
information in the graph. The second GMS task is associated with applying a graph
grammar production (modifying the graph repository) and with execution of the se
mantic action (which requests all LREs to update the code maintained by nodes modi
fied by this production).

Let us trace the above schema on the example (Figure 7a). Both developers are
choosing some components to modify - the repository is looking for the right context.
For unique identification of the components and better performance the GMS main
tains unique indices for every node in the graph. An attempt to apply the Encapsulate
Variable to "v" results on identifying nodes with indices 1 and 2,similarly an applica
tion of the Move Variable to move "v" from "C" to "D" resuhs in identifying nodes
with indices 1, 2 and 3.

-name:C
'Visibility: protected

-nanie:v
-vialJiiit-fpuî tic

•nameiD
-vis(biiity:pubiic

jj, Pmv

Pev

-name:C
-vigbiiity: protectee

IT
-naiiie:D
-viabilltyipubitc

-name; set
-via biSity: public

.̂tipdate>; -name:v
-vidbllity:piivate

^•^access»
4 : Method

-name: get
-visibiity:public

Jl Pmv
V

-name:C
-via bil ity: protected

-name:D
-visibility: public

I
-viEibility;publlc

Pev

-name:C
-vidbiiity: protectees

«.xmenibei>>

-nameiO
-vi£ibiitty:public

5: Method

-name: set
-viabiitty:public

«upc]ate»

2: Variable

-name:v
-viability: private

=:<aa;es£*>
4:MathDe!

-name:aet
-viability; public

Fig. 7. Synchronization process using indexed EDG graphs.

www.manaraa.com

Formalizing Software Refactoring in the Distributed Environment 359

After the context of these operations has been established we can read and share
this part of graph in a parallel way. The Move variable and Encapsulate variable re
quests on the nodes can be serviced by DCE. However sometimes the request can not
be served or can be only served partially with respect to preserving some of precondi
tions associated with the request. Let us note the important role of the semantic ac
tions, that are tracing the graph modification (associated with the embedded transfor
mation) and creating the refactoring orders for all LREs maintaining the source code
associated with this graph modification.

Finally, in cooperation, both LREs and the GMS update the graphs to new in
stances. It is easy to notice that the order in which the developers make synchroniza
tion does not matter (Figure 7d). The key assumption for this method is that both pro
ductions have to preserve nodes indices.

It is easy to find out that the following conflicts pointed by [5] can be excluded in
the same way:

- Rename Variable and Move Variable applied to the same variable,
- Rename Variable and Variable Encapsulate applied to the same variable,
- Rename Variable and Pull Up Variable applied to the same variable,
- Rename Method and Pull Up Method applied to the same method,
- Rename Method applied twice (separately by two developers) to the method within

the same class,
- Rename Variable applied twice to a variable within the same class.

While dealing with other conflicts, when adding new components or deleting exist
ing ones, the proposed method is not useful. To avoid such conflicts we have to ex
clude concurrent execution of the conflicted refactoring operations. This is a simple
task from synchronization point of view (some operations can be delayed until global
predicates, based on attributes, are fulfilled). This solution is still difficult to approve
by developer teams. One of the developers should wait, however now the time of
waiting is considerably decreased (only one refactoring operation should be com
pleted instead of a full sequence). Moreover, introduction of the graph repository
causes that developers are informed about conflict just in the time when it appears,
while earlier they were informed after finishing of sharing a new software version.

7 Conclusions

In the paper we propose a solution dealing with refactoring conflicts based on [5]
classification. Introduced graph repository concept, properly transformed (under con
trol of graph grammars) is completely enough to defeat the kind of conflicts where the
key problem was losing method or variable identification while merging the changes.
The introduced environment allows us to solve these conflicts automatically.

In order to prove the theoretical value of the method the centralized service of the
graph repository is sufficient, but in the practical solution it seems that the repository
should be distributed (together with system source code). Fortunately, for the aedNLC
graph grammar semi-parallel derivation mechanism over the distributed graph has
been introduced [13]. Moreover, the parser of aedNLC graph grammar is based on

www.manaraa.com

360 Leszek Kotulski, Adrian Nowak

ETPL(k) graph grammar with 0(n2) computational complexity [16] and the effec
tiveness is the most important issue in the system working online. Graph parsing will
be useful when describing and allocating the nested distributed system [6], we can
utilize it to exchange whole subgraphs in case of complex refactorings.

The graph repository could be further utilized by holding additional attributes of
the software, also including dynamic parameters suitable to calculate metrics and us
ing these to perform automate refactorings. Derivation control diagram is able to
manage refactoring compositions to introduce patterns and should be extended to
manage plans of large refactorings (under interactive control of a developer).

References

1. Fowler, M.: Refactoring: Improving the Design of Existing Programs. Addison-Wesley
(1999)

2. Opdyke, W.F.: Refactoring: A Program Restructuring Aid in Designing Object-Oriented
Application Frameworks, Ph.D. thesis, University of Illinois at Urbana-Champaign (1992)

3. Roberts, D., Brant, J., Johnson, R,: A Refactoring Tool for Smalltalk, Theory and Practice
of Object systems (1997) 253-263

4. Eclipse Foundation, http://www.eclipse.org/eclipse/. The Eclipse Project (2005)
5. Mens, T., Taentzer, G., Runge, O.: Detecting Structural Refactoring Conflicts Using Criti

cal Pair Analysis. Electronic Notes in Theoretical Computer Science, Vol. 127(3) (2005)
113-128

6. Mens, T.: A state-of-the-art survey on software merging, IEEE Transactions on Software
Engineering 28(5) (2002) 449-462

7. Kotulski, L., Nowak, A.: Graph Repository As a Core of Environment for Distributed Soft
ware Restructuring and Refactoring, 24* lASTED International Conference on Applied In
formatics, Insbruck (2006)

8. Mens, T., Eetvelde, N., Janssens, D., Demeyer, S.: Formalising Refactoring with Graph
Transformations, Journal of Software Maintenance and Evolution (2004) 1001-1025

9. Flasihski, M., Kotulski, L.: On the Use of Graph Grammars for the Control of a Distributed
Software Allocation, The Computer Journal, 35(1) (1992) 167-175

10. Roberts, D.: Practical Analysis for Refactoring, Ph.D. thesis, University of Illinois at Ur
bana-Champaign (1999)

ll.Engels, G., Schurr, A.: Encapsulated Hierarchical Graphs, Graph Types and Meta Types,
Electronic Notes in Theoretical Computer Science (1995) 2

12. Warmer, J., Kleppe, A.: The Object Constraint Language: Precise Modeling with UML,
Addison-Weslay (1998)

13. Kotulski, L.: Parallel Allocation of the Distributed Software Using Node Label Controlled
Graph Grammars, Krakow, Poland, Jagiellonian University, Inst, of Comp. Science (2003)

14.Kotulski, L.: Model systemu wspomagania generacji oprogramowania wspolbieznego w
srodowisku rozproszonym za pomoc^i gramatyk grafowych (in Polish), Krakow, Poland, Ja
giellonian University Press (2000)

15. Kotulski, L.: Graph representation of the nested software structure, Proc. 5* International
Conference on Computational Science, Atlanta, GA (2005) 1008-1011

16. Flasihski M.: Power Properties of NLC Graph Grammars with a Polynomial Membership
Problem, Theoretical Computer Science, 201(2) (1998) 189-231

www.manaraa.com

Minik: A Tool for Maintaining Proper Java Code
Structure*

Jacek Chrz^szcz^, Tomasz Stachowicz^
Andrzej G^sienica-Samek^ and Aleksy Schubert^-^

^ Comarch SA, Warsaw, Poland
2 Institute of Informatics
Warsaw University, Poland

^SoS Group NIII,
Faculty of Science, University of Nijmegen, Netherlands

Abstract. Maintaining discipline of code in an evolving software project is
known to be difficult. We present Minik, an automatic tool written in Java
and for Java, that assists technical managers to enforce high and medium level
design decisions on programmers. The tool supports hierarchical encapsulation of
software components and helps to maintain order in dependencies between parts
of the project's source code and to control calls to external libraries.
Minik was created to support the development of Ocean GenRap Report Generator,
a complex Java project of over 350KLOC, developed in Comarch Research
Center. With time, it became an invaluable help for technical managers as well as
for new programmers who could quickly learn the structure of the code base.

1 Introduction

Development of large software projects often escapes traditional waterfall software
creation methodology. This concerns in particular systems of big complexity, such
as compilers, database engines or modern spreadsheets. Agile approach to software
creation process seems much better suited to this kind of software, which is by nature
in constant development, improving (hopefully) with each release in terms of enhanced
functionality and stability. However, this kind of iterative development style may easily
lead to overly complicated code, where almost every part of code depends on every
other. Such structure is very difficult to maintain and develop [21], so it is crucial to
create methodologies and tools supporting project managers in their task of limiting the
code complexity without precluding integration of new features and improvements.

Mainstream programming languages, such as Java, offer some support for hierarchical
code organization, but the support is limited. While encapsulation on the level of
one file (class) or one directory (package) is supported by the language, higher level
encapsulation is left to the programmer. In particular, even if files are placed in a
hierarchical directory structure, from the Java programming language point of view the
package structure is flat. As far as e.g. method visibility is concerned, two classes

This work was partly supported by KBN grant 3 TllC 002 27 and Sixth Framework
Programme MEIF-CT-2005-024306 SOJOURN.

Phase use the following format when citing this chapter:

Chrzqszcz, J., Stachowicz, T., G^sienica-Samek, A., Schubert, A., 2006, in IFIP International Federation for Information

Processing, Volume 227, Software Engineering Techniques: Design for Quality, ed. K. Sacha, (Boston: Springer), pp.

361-371.

www.manaraa.com

362 Jacek Chrzqszcz, Tomasz Stachowicz, Andrzej Gqsienica-Samek, Aleksy Schubert

may either be from the same package or from different ones, regardless if they are
just in sibling directories or far away apart in the directory structure. Consequently, a
modification of a method annotated as public, may potentially require the knowledge
needed to modify any part of the program.

Moreover, the flexibility of these design standards and programming language
grouping constructs like packages make it easy to introduce circular dependencies.
The experience in software development shows that circular dependencies cause
problems [9,17,23,26] so the acyclic coding pattern occurs often in project design
guidelines [7,16,18]. Cyclic dependencies are regarded as a strong factor in measures of
code complexity [27] especially when maintainability of code is of the main interest [15].
Moreover, the presentation of code dependencies in form of a DAG (directed acyclic
graph) has already been used in the context of support for maintainability [2] and easy
extensibility [19].

In this paper we present Minik, the code management tool, primarily created to
support orderly development of the Ocean GenRap Report Generator [10] by the
Comarch Research Center. Minik supports a true hierarchical encapsulation and enforces
a transparent and simple acyclic dependency structure. In a project managed using
Minik, dependencies on distant packages are declared in a separate .minik management
file of each component. The tool makes sure that all dependencies are declared and that
they form an acyclic structure. Programmers are required to run Minik at every build,
so the dependency descriptions are always up-to-date. Moreover, a modification of the
.minik file, requires the consent of the technical manager. Experience shows that these
changes tend to happen less and less frequently. Minik is also useful in enforcing
certain design patterns, e.g. Facade or Bridge [11], which can be recorded in the .minik
files and hence become harder to break by programmers.

Another important aspect of Minik is the possibility to constrain the usage of
external dependencies inside the project. Minik can immediately enforce the manager's
decisions that e.g. JDBC classes can only be used in the DAO implementation or that
the class java.lang.Thread can only be used in the main package of the application and
not inside components. Any programmer trying to break this policy, either by haste or
unawareness, will immediately be warned by Minik and forced to correct the mistake.

The adoption of Minik by GenRap programmers turned out to be very smooth.
After an initial reluctance, a natural people's reaction to any limitation, the programmers
started treating the Minik discipline as part of the limitations of the programming
environment, like e.g. Java type system. Moreover, since .minik files constitute only a
fraction of the whole code (less than 1%), they proved to form a very good guide for
programmers which were new to the GenRap project.

Minik implements the core functionality of the Kotek methodology. The latter,
presented in [12], is an advanced module system combined with a build tool, that
extends Minik with precise inter-component contract specifications, parametrisation of
large code fragments with respect to some interface (e.g. widget library) and conditional
compilation, depending e.g. on a hardware platform.

The present paper is organized as follows. In the next section we describe basic
features of Minik and limitations that it puts on the project structure in order to
maintain clarity. In the presentation we use a simple example of a toy project MiniEdit,

www.manaraa.com

Minik: A Tool for Maintaining Proper Java Code Structure 363

whose structure is a (substantial) simplification of the structure of GenRap. Then we
present and explain the syntax of the .minik files and describe the impact of Minik on
the development of the GenRap project.

2 The structure of software projects

The complexity of contemporary software structure has led to several approaches aiming
to conceptually simplify dependency diagrams of software. Most approaches rely on
providing the developers means to present the code interdependencies and coupHng them
with source code quality metrics. Examples of systems in this category are [5,6,13,22,24].
The systems give guidance to good source code structure, but do not enforce or enforce
in a weak manner the structural rules which are appropriate for the project at hand.

Another approach is represented by MJ [3], a rich system of modules for Java. In
this case, the software modules are the grouping entities which forbid accesses which
are not expHcitly declared in module descriptions. This mechanism, however, does not
impose any structural restrictions on the way the dependencies are organized.

Yet another approach to structuring the source code consists in the use of a type
system which controls the read or write access to particular pieces of the code. In this
case, a separation between different code pieces is governed by local annotations in the
source code (or in the comments in the source code) that specify which classes are
intended to be used as a single module. Examples of systems in this group are [4,8,28].
These systems allow to describe detailed data dependencies up to the level of fields in
objects.

2.1 Software project structure enforced by Minik

We describe here the structure of projects that is enforced by our tool and methodology.
We focus on greater units of source code, called modules or components. Conceptually,
the basic ones should contain several classes or packages, the complex ones consist
of several sub-components (and possibly a few additional classes). To introduce the
notions addressed by Minik, we use a simple example of a hypothetical editor MiniEdit,
whose structure is a considerable simplification of the structure of the GenRap project.

The strength of Minik results from the structure of possible interdependencies
between components that describe the way the source code is organised. We consider
two perspectives of code organisation. The first one, vertical, corresponds to the
hierarchical division of the project into components, components into sub-components
and so forth. The second one, horizontal, describes functional dependencies between
fragments of code. Other Java module systems did not consider explicitly these code
organisation facets [1,3,14].

2.2 Vertical structure

The hierarchical structure of the project that is enforced by Minik corresponds well
to good organisational patterns in which hierarchical connections allow to avoid
communication blow-up between diiferent organisational units. This kind of code

www.manaraa.com

364 Jacek Chrzqszcz, Tomasz Stachowicz, Andrzej Gqsienica-Samek, Aleksy Schubert

(document) (io) (export) { m J

Fig. 1. The vertical structure of the MiniEdit project.

management support is often present in programming languages. The Java package
system, in which packages correspond hterally to the directory tree of the development
site, is the most notable example of it. In our example (Fig. 1) the MiniEdit appUcation
(represented by the topmost component app) is divided into four components of which
two have sub-components. Minik strengthens the Java package system by enforcing a
true hierarchical encapsulation: it is forbidden to refer to the insides of a component
without its permission. We discuss it further at the end of the next section.

2.3 Horizontal structure

By horizontal structure of the project we mean functional dependencies between
components of our project. We say that an entity (class/package/component) M depends
on another entity N when the source code in M refers a class, a method or a value in
N. Figure 2 presents the graph of dependencies between main components of the
MiniEdit appUcation. In order to obtain a system with low maintenance cost, we impose
several restrictions on the structure of possible references between components.

The first restriction is based on the assumption that functional dependencies between
components should form a DAG. The experience in software development shows that
circular dependencies cause problems, especially when maintainability of the code is of
the main interest.

Of course, cyclic dependencies are not problematic when they occur in a fragment
of code whose size is small enough to be easily grasped by a programmer. Therefore
Minik does not prevent dependency cycles between classes belonging to one component,
but only the big cycles, i.e. involving classes in several components.

Dependencies and encapsulation The second restriction concerns the vertical structure
that we introduced earlier. It is based on a natural principle that one should not
manipulate the internals of another component, unless explicitly authorised. In our
example the document.minik file declares the dom sub-component as exported (see
Fig. 5 and its description in Sect. 3), but not the implement sub-component (marked
gray in Fig. 1). Consequently, the code in e.g. ui may use the (public) classes defined
in app.document.dom, but not those defined in app.document.implement.

www.manaraa.com

Minik: A Tool for Maintaining Proper Java Code Structure 365

Fig. 2. The horizontal structure of the middle layer of MiniEdit.

3 Syntax and example

The usage of Minik is directed by .minik files, which are placed in most directories of
the project source tree. The syntax of those files is very straightforward (see Fig. 3). We
explain it here, using our MiniEdit example, whose structure is depicted in Fig. 1 and 2.

The contents of a .minik file consists of four parts. The first one, starting with the
keyword use, specifies the dependencies of the the given component. In Fig. 4, one can
see the contents of the main .minik file of the MiniEdit application, app.minik, so its
first line specifies external dependencies of the whole project: the Java standard library
and an (imaginary) library to produce PDF documents. For internal components, such
as ui (Fig. 6), one specifies dependencies on (parts of) external components of the
whole projects (like java_lang, java_ui) and other components of the project (document,
io, export).

The second section contains definitions of restricted components. They are used to
control which parts of external dependencies are used where in the project source. In
general, from the dependency control point of view, a component is simply a name
attached to a list of class names. Consequently, a definition of a restricted component
consists just in creating a new name for the list of classes obtained by restricting the
list attached to the original component. One can use the following optional restriction
operations:

- positive restriction - keyword allow - from the list of class names of the original
component, we select only those which match at least one of the given class patterns,

- negative restriction - keyword deny - from the list of class names, we subtract
those which match one of the given class patterns.

Of course if both restrictions are omitted the new component is just a renaming of the
original one.

In case of app.minik, we name various parts of standard library and the PDF
writer in order to precisely say, in the next section of app.minik, which classes can be
used in which components. The third section describes how sub-components of the
given component depend on one another, on external components and on restricted
components. For example, it is easy to see that the ui component depends on all other
sub-components of app and that it is the only one allowed to manipulate reflection,
threads and other java_lang classes not included in java_core. Besides, only export can
access classes of pdfwriter, and only those defined in the topmost package, not internal
ones, A special name this can be used as the target of the last build clause (see e.g.
Fig 5) to indicate what dependencies are allowed in classes from the current directory.

www.manaraa.com

366 Jacek Chrzqszcz, Tomasz Stachowicz, Andrzej Gqsienica-Samek, Aleksy Schubert

Since the name of a sub-component ci can only be used as a dependency of the
another sub-component C2 after the corresponding build ci clause, the structure of
dependencies cannot contain cycles.

The last part of the .minik file lists the names of the sub-components to be exported.
This is where hierarchical encapsulation is implemented: other components can only
refer to those parts of the current component which it explicitly lists as exported.

In case of the topmost .minik file of the application, the return clause only indicates
the component containing the class with the main method.

<minik>
<use>

<define>

<package>
<build>

<retum>
<thident>

use Java pdfwriter

<use><define> .. <define><build> .. <build><return>
use <ident> .. <ident>
define <ident> = <ident> [allow {<package>,.., <package>}

[deny {<package>,.., <package>]]
<ident>.<package> | <ident> | * | **
build <thident> : <ident> .. <ident>
return <thident> .. <thident>
this I <ident>

Fig. 3. Syntax of .minik files.

define java-core =
Java allow { java.lang.*]

deny { javaJang.Class, java.lang.ClassLoader, java.lang.Compiler,
java.lang.Process, java.lang.Runtime, java.lang.Thread]

deUne Java Jang = Java allow {Java.lang.*]
define Java-io = Java allow { Java.io.*, Java.nio.**)
de&ne Java-xml == Java allow { Javax.xml.**, org.xml.**, org.w3c.dom.** }
define java.Mi =• Java allow { Java.awt.**, Javax.swing.**, Javax.print.** }

dehne pdf = pdjwriter Mow [com.pdfwriter.* }

build document: Java-Core
build io : document Java-core Java-io java-xml
build export: document pdf Java-core JavaJo
build ui: document io export Java Jang Java-ui

return ui

Fig. 4. The file app.minik ofMiniEdit.

use Java-core

build dom : Java-core
build implement: dom Java-core
build this : dom implement Java-core

return dom this

Fig. 5. The file document.minik ofMiniEdit.

Every directory of the project can have its own .minik file. If it is missing, all
classes in the directory and its subdirectories are treated as one basic component.

www.manaraa.com

Minik: A Tool for Maintaining Proper Java Code Structure 367

use document io export java Jang java-ui

build editor: document java Jang java-ui
build this ; editor document io export java Jang java-ui

return this

Fig. 6. The file ui.minik ofMiniEdit.

Its exported classes are those declared as public. In MiniEdit the document and ui
components have their own .minik files. The document.minik file is given in Fig. 5. It
specifies the Facade design pattern: the dom sub-component defines the interface,
i.e. the data object model together with the names of the operations that can be
performed on the document. Next, the implement sub-component contains the actual
implementation of the data structure representing the edited document. It may use the
dom sub-component, for example to say that some classes of implement are instances of
interfaces defined in dom. The classes in the document directory relate the specification
and implementation, for example by providing factory functions returning an object
created by a class from implement, satisfying an interface specified in dom. The last
line says that only the classes exported by the dom component and classes in the
document directory can be used outside document.

The file ui.minik, presented in Fig 6 is similar to document.minik, but the interface
part is not placed in a separate sub-component.

It is worth noting how the use of the external component pdfwriter can be traced in
the project using the .minik files. Indeed, app.minik tells us to look only in the export
component and nowhere else.

How Minik works. The most important part of Minik is the recursive function minik^fun
operating on an environment which maps component names to sets of Java class names.

The initial environment describes the external dependencies of the project and is
created from the arguments supplied by the user in the invocation of Minik. One of the
arguments is the directory containing .jar files of the dependencies. By default, for each
dependency M, the file M.jar should be placed in this directory, apart from the java
component, which is found in the standard location of the Java installation. For our
example, the only external dependency file is pdfwriter.jar.

The initial environment passed to the first invocation of minik_fun is created by
scanning the .jar files of dependencies.

The function minik^fun takes an environment E and a directory name D, and returns
the set of names of classes exported by the component located in the directory D.

If the .minik file is missing in the directory D, the function just checks the legality
of the dependencies of all classes in D and its sub-directories: it is verified that all
referenced class names are in the range of the environment E. The returned set of
classes includes all public classes of D and its sub-directories.

If .minik is present in D, minik_fun operates in four steps, corresponding to
sections of .minik. The first step consists in checking that dependency names listed
in the use clause are valid, i.e. they are in the domain of the environment. In the
second step the define clauses are processed: the environment E is extended with
restricted components. In the third step, for each clause build c : d i . . . dn. the function

www.manaraa.com

368 Jacek Chrzqszcz, Tomasz Stachowicz, Andrzej Gqsienica-Samek, Aleksy Schubert

minik-fun is called recursively with the environment E\di_„d^ (i.e. E restricted to
the dependencies allowed for the sub-component c) and directory name D/c, which
checks correctness of the dependency structure of the sub-component c and returns
the set of classes C^ exported by c. The mapping c i-̂ Co is then added to E for
the processing of subsequent sub-components. If the last build clause is of the form
build this : di... dm, the legality of dependencies of classes in D is checked: all
referenced class names must be members of the components di.. .dm- The last step is
the processing of the return c i . . . c^ clause. It is checked that c i . . . Cfc are components
built in step 3 (and not external or restricted components) and the set of all classes
exported by components c i . . . Cfc is returned as the result of minik-fun.

4 GenRap: The Minik experience

Ocean GenRap [10] is a complex application of over 350 thousand hues of code, written
mostly in Java. It is a report generator for database applications, allowing for intuitive
and easy edition of reports with constant data view, enabling data analysis directly in
the edited document. It has a graphical user interface, similar to modern text editors or
spreadsheets, and a novel live context association mechanism, allowing the user to
move fragments of reports between documents. GenRap has the possibiUty to connect
to a number of database engines and export the generated report to popular formats,
including pdf and html. It is available as part of the CDN OPTIMA system [20] since
mid 2005 and as a standalone application since January 2006.

The development of GenRap started in 2003. Since then, it has been actively
developed by a dozen of enthusiastic programmers, following an agile development
methodology. There is no precise long term development plan, only the product vision
from which the detailed plan for a following couple of months is derived. The vision
itself is modified as new features are implemented and users give their feedback. Such
cycles usually take two to three months. During that time two processes are done in
parallel: implementation of new features and maintenance, consisting in bug-fixing and
code refactoring.

From the historical perspective, the need for a tool helping to manage the code
became clear after a few months of intensive coding, when the code reached 40 thousand
lines. In order to be maintainable the project needed a strict regime in encapsulating
and separating components. A simple bash script to separately compile components in
restricted environments was used at first. If the code contained a disallowed dependency
the compilation just stopped with an error.

Later, it was decided that this policy was too strict. For productivity reasons, a
developer should be able to build the project with bad dependencies, but a patch
supphed to the central repository should always ensure a correct dependency structure.

Minik was implemented with this idea in mind. The tool automatically checks the
structure of the code without completely preventing defective builds. Apart from that,
other correctness tests were incorporated to Minik, which are beyond the scope of this
paper.

As experience shows, the .minik files constitute between 0.5% and 1% of the
whole code (see Fig. 7). It turns out that they are modified more-less in one out of 10

www.manaraa.com

Minik: A Tool for Maintaining Proper Java Code Structure 369

Month

2004-10
2004-11
2004-12
2005-01
2005-02
2005-03
2005-04
2005-05
2005-06
2005-07
2005-08
2005-09
2005-10
2005-11
2005-12
2006-01
2006-02
2006-03
2006-04

Total

Patches
P

67
136
78
53
65
89
33
66

105
85

114
89

130
191
190
130
119
115
20

1875

PM

2
15
8

14
17
13
6

13
12
5
5
1

10
19
12
2
9

12
4

179

PM/P

2.98%
11.02%
10.25%
26.41%
26.15%
14.60%
18.18%
19.69%
11.42%
5.88%
4.38%
1.12%
7.69%
9.94%
6.31%
1.53%
7.56%

10.43%
20.00%

9.54%

PLOC

5 970
35 871
57 856
70 518
73 442
38 898
15 013
43 454
22 368
89 641
10 940
7 699

51 236
42 754
44 669
14 965
44 640
49 366
38 420

757 720

Source Code
NM

65
66
70
75
79

100
106
113
125
126
127
129
129
137
158
164
164
164
168

LM

1065
1158
1216
1282
1388
1734
1871
1960
2200
2245
2260
2292
2292
2431
2683
2758
2761
2768
2864

NJ

1106
1120
1219
1246
1330
1372
1459
1512
1612
1638
1653
1662
1676
1746
1864
1921
1939
1923
2002

U

124 283
146 076
159 238
178 340
187 130
199 035
220 518
227 104
244 235
249 815
251 459
254 513
257 662
278 380
311 194
327 098
332 677
326 754
345 471

NM/NJ

5.87%
5.89%
5.74%
6.01%
5.93%
7.28%
7.26%
7.47%
7.75%
7.69%
7.68%
7.76%
7.69%
7.84%
8.47%
8.53%
8.45%
8.52%
8.39%

LM/U

0.85%
0.79%
0.76%
0.71%
0.74%
0.87%
0.84%
0.86%
0.90%
0.89%
0.89%
0.90%
0.88%
0.87%
0.86%
0.84%
0.82%
0.84%
0.82%

P = Total no of patches PM = No of patches touching .minik
PLOC = Total no of lines of code patched
NM = No of .minik files LM = LOC of .minik
NJ = No of .Java files LJ = LOC of .Java

Fig. 7. GenRap development statistics.

commits. Thanks to the good structure, the project enjoys a stable growth in lines
of code per month and the project managers are not afraid to improve any of its
components, hideed, since it is easy to see what depends on a given fragment of code,
it is possible to foresee the impact of a planned refactoring on the rest of the code base.

Currently the GenRap code is divided into around 170 hierarchic components,
described by as little as 2800 lines of .minik files. Almost all of these files are smaller
than 50 lines, the average being about 17. Their structure is also very simple so they
are very easy to understand.

Using Minik in the project has also a positive psychological impact on the
programming team's integrity. The programmers do not feel intimidated by a manager
pointing out their structure errors. Instead, they just treat limitations imposed by Minik
as part of the limitations of the working environment: the language, the compiler,
design patterns and Minik.

The tool itself is written in Java, it has about 3000 lines and uses a custom
class file parser. To increase its integration with the working environment an Eclipse
plugin for Minik has been developed. It is rather basic, but nevertheless it is possible
to automatically start the verification process and easily access the files with bad
dependencies.

www.manaraa.com

370 Jacek Chrzqszcz, Tomasz Stachowicz, Andrzej Gqsienica-Samek, Aleksy Schubert

5 Conclusions

The need to synchronize architecture documents with the actual source code is a very
important aspect of modeling. Many tools supporting UML technology, e.g IBM
Rational Software Architect [25] or Microsoft Visual Studio [29], have included utilities
to synchronize source code changes with the evolution of the visual model, which is
called round-trip engineering. However, the tools based on UML emphasise early
project development stages. In particular, they provide clustering and encapsulation
mechanisms in the design stage of software production but these architectural decisions
are weakly enforced in the coding and maintenance stages. Moreover, they do not
encourage comprehensive arrangement of construction blocks and so complicated
diagrams are commonly encountered.

In this paper, we have presented Minik, a light-weight tool to maintain proper
structure of Java projects, realized in Comarch Research Center as a development
utihty for the Ocean GenRap Report Generator. Minik supports the technical managers
in enforcing acyclic structure of inter-component dependencies and helps programmers
understand and maintain the structure of the project. It supports true hierarchical
encapsulation of software components, helps tracking where external dependencies are
used in the code and permits to foresee the impact of planned refactoring.

Thanks to Minik and its consistent use in project management, the development pace
of GenRap is steady for over two years without increasing the programmers team. It turns
out that the structure of the code grows as fast as its size and therefore the development
does not lead to bloated code which is often a nightmare in large software projects.

References

1. Davide Ancona and Elena Zucca. True Modules for Java-like Languages. In ECOOP '01:
Proceedings of the 15th European Conference on Object-Oriented Programming, pages
354-380, London, UK, 2001. Springer-Veriag.

2. Liz Burd and Stephen Rank. Using Automated Source Code Analysis for Software Evolution.
In 1st IEEE International Workshop on Source Code Analysis and Manipulation (SCAM
2001), 10 November 2001, Florence, Italy, pages 206-212, 2001.

3. John Corwin, David F. Bacon, David Grove, and Chet Murthy. MJ: A Rational Module
System for Java and its Applications. In Object-Oriented Programming, Systems, Langauges
& Applications, 2003.

4. Dave Clarke and Sophia Drossopoulou. Ownership, encapsulation and the disjointness of
type and effect. In OOPSLA '02: Proceedings of the 17th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications, pages 292-310, New
York, NY, USA, 2002. ACM Press.

5. Mike Clark. Jdepend. http://www.clarkware.com/software/JDepend.html.
6. Compuware. JavaCentral. http://frontline.compuware.com/javacentral/tools/26222.asp.
7. Compuware. Optimaladvisor supersedes the Package Structure Analysis Tool. Technical

report, JavaCentral, 2005.
8. W. Diet! and P. Muller. Universes: Lightweight ownership for JML. Journal of Object

Technology (JOT), 4(8):5-32, October 2005.
9. Martin Fowler. Reducing CoupHng. IEEE Software, July/August 2001.

10. Ocean GenRap report generator. Comarch Research Center, http://ocean.comarch.pl/genrap/.

www.manaraa.com

Minik: A Tool for Maintaining Proper Java Code Structure 371

11. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements
od Reusable Object-Oriented Software. Addison-Wesley Professional Computing Series.
Addison-Wesley, New York, NY, 1995.

12. Andrzej Gqsienica-Samek, Tomasz Stachowicz, Jacek Chrzqszcz, and Aleksy Schubert.
KOTEK: Clustering of The Enterprise Code. In Krzysztof Zieliiiski and Tomasz Szmuc,
editors, Software Engineering: Evolution and Emerging Technologies, volume 130, pages
412-417. lOS Press, 2005.

13. Alex Iskold, Daniel Kogan, and Goran Begic. Structural analysis for Java.
http://www.alphavi'orks.ibm.com/tech/sa4j.

14. Yuuji Ichisugi and Akira Tanaka. Difference-Based Modules; A Class-Independent Module
Mechanism. In ECOOP '02: Proceedings of the 16th European Conference on Object-Oriented
Programming, pages 62-88, London, UK, 2002. Springer-Verlag.

15. Stefan Jungmayr. Testability Measurment and Software Dependencies. In Software
Measurement and Estimation, Proceedings of the 12th International Workshop on Software
Measurement (1WSM2002). Shaker Verlag, 2002. ISBN 3-8322-0765-1.

16. Kirk Knoernschild. Acyclic Dependencies Principle. Technical report, Object Mentor, Inc.,
2001.

17. J. Lakos. Large-scale C++ software design. Addison-Wesley, 1996.
18. Robert C. Martin. Agile Software Development, Principles, Patterns, and Practices. Prentice

Hall, 2002.
19. D. Notkin and W. G. Griswold. Extension and software development. In ICSE '88:

Proceedings of the 10th international conference on Software engineering, pages 274-283,
Los Alamitos, CA, USA, 1988. IEEE Computer Society Press.

20. CDN OPTIMA. Comarch. http://www.comarch.pl/cdn/Products/.
21. A. Podgurski and L. A. Clarke. A Formal Model of Program Dependencies and Its

Implications for Software Testing, Debugging, and Maintenance. IEEE Transactions on
Software Engineering, 16(9):965-979, 1990.

22. Neeraj Sangal, Ev Jordan, Vineet Sinha, and Daniel Jackson. Using dependency models to
manage complex software architecture. In OOPSLA '05: Proceedings of the 20th ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and applications,
pages 167-176, New York, NY, USA, 2005. ACM Press.

23. Barry Searle and Ellen McKay. Circular Project Dependencies in WebSphere Studio.
developerWorks, IBM, 2003.

24. Chris Smith. Japan, http://japan.sourceforge.net/.
25. Ibm Rational Software Architect, http://www-306.ibm.com/software/awdtools/architect/

swarchitect/.
26. J. Soukup. Taming C++. Addison-Wesley, 1994.
27. Lassi A. Tuura and Lucas Taylor. Ignominy: a tool for software dependency and metricanalysis

with examples from large HEP packages. In Proceedings of Computing in High Energy and
Nuclear Physics, 2001, 2001.

28. Jan Vitek and Boris Bokowski. Confined types. In OOPSLA '99: Proceedings of the
14th ACM SIGPLAN conference on Object-oriented programming, systems, languages, and
applications, pages 82-96, New York, NY, USA, 1999. ACM Press.

29. Microsoft Visual Studio 2005. http://msdn.microsoft.com/vstudio/.

www.manaraa.com

Multidimensional Legacy Aspects of Modernizing Web
Based Systems

Henryk Krawczyk', Konrad Dusza', Lukasz Budnik', Lukasz Byczkowski'

Gdansk University of Technology,
Faculty of Electronics, Telecommunications and Informatics

ul. Gabriela Naratowicza 11/12, 80-952 Gdansk, Poland

Abstract. The paper presents basic legacy transition tecliniques used in soft
ware lifecycle either on system or component levels. It discusses a user case of
the Endoscopy Recommender System. It also considers an impact of require
ments, programming platforms, software development strategies and software
standards on legacy status of web applications.

1 Introduction

With web technologies developing at a growing pace and IT systems being adopted
into business models, there occur situations where increasing number of companies
face the urging need for serious changes in their IT systems [1], Legacy Information
Systems can be defined as "any IT system that significantly resists modification and
evolution" [2] that most often are the IT backbone of a company [3]. In general, the
topic of Legacy Information Systems has been thoroughly examined and the common
problems are well identified [3][4][5]. Even though, case studies show that no miracle
cure for "migration migraine" has been developed. However, there are three main
concepts regarding coping with Legacy Information Systems. These are [3] (from the
most lightweight, to the most revolutionary one) as follows:

Wrapping - accomplished by developing a small software component that con
nects a legacy component with a new component. A wrapper serves as a translator in
coinmunication between these components.

Migration - a much more complex approach, used when both wrapping and re
development caimot be afforded either in terms of risk level or when transition be
tween components must be transparent.

Re-development - means developing a component from scratch, usually re-
implementing a component in a different programming language.

All these strategies can be deployed on both the system level and on the compo
nent level. For instance, we could wrap the business tier, re-develop presentation tier
and migrate data tier in a web application.

The next section discusses attributes that describe legacy characteristics of web-
based legacy IT systems. Section 3 describes a solution for legacy problems sup
ported by a real-world case study. It concerns modernizing Endoscopy Recommender

Please use the foUawingformat when citing this chapter:

Krawczyk, K, Dusza, K., Budnik, L., Byczkowski, L., 2006, in IFIP International Federation for Information Processing,
Volume 227, Software Engineering Techniques: Design for Quality, ed. K. Sacha, (Boston: Springer), pp. 373-378.

www.manaraa.com

3 74 Henryk Krmvczyk, Konrad Dusza, Lukasz Budnik, Lukasz Byczkowski

System working at the Medical University of Gdansk. Besides, it provides a general
methodology of developing legacy transition strategies in web based IT systems. The
concluding section presents general suggestions relating to inclusion of legacy factors
into software life-cycles.

2 Legacy Attributes of Web Applications

One can define a typical web-based legacy information application as a system which
flinctions are crucial for supporting business in the company of which upgrade in
volves a high degree of risk. One example is an e-shop based on Apache 1.3, Perl
CGI-scripts and MySQL 3.2 DBMS in which business logic and presentation layer
are intertwined. The main questions concerning legacy issues are: When does a sys
tem become a legacy one? When a transition cannot be avoided? A legacy system is a
system that still fiilfills software requirements imposed by the contract under which
the system has been developed.

Below is the analysis of engineering-related external factors that are the catalysts
of changes in the system. They can be divided into four main categories: extra func
tional requirements and expectations, technological platform changes, software archi
tecture modifications, standards and interoperability support. These categories of
changes are illustrated in Fig. 1 - Fig. 4.

The most common reason for serious improvements in an information system are
changes in software requirements. Apart from functional ones, there are groups of
other requirements that are often not fulfilled in the first version of a system. The
increasing importance of different kinds of requirements in time is suggested in Fig.l.

Fimt-tionai - Data Integrity & - Interoparabflity
structuralization -Maintainability -Mobility
• Reusability / - Safety / - Ubiquity completness Usab iTtv / - R«"^«bmty / - Safety

usability / _ Security / - Scalability

1990 1995 2000 2005 years

Fig. 1. Distribution of requirements importance in web based systems.

Today, there is a plethora of technologies that support web application develop
ment (see Fig.2). Decision on rewriting a web application to a different technological
platform can be taken to: achieve better scalability, efficiency and maintainability;
show customers that the company uses the newest technologies; merge with other
systems written in other technologies. Some migrations are easy to conduct from that
point of view, eg. from PHP3 to PHP5, others require quite an effort (eg. PHP to
J2EE). In most cases, change of technological platform by itself should not be the
only reason to conduct migration.

C/C++, Perl „ , , „ , „ . . Macromedia „^^ Webware .,__ ,.,„u -,«
/applications / ^ " P yJavaScr.pt ^ ^^^^"' ^ J2EE i ^^Pyl^on / ' ^ ^ y Web 2.0^

1990 1994 1995 1996 1999 2001 2002 2004 years

Fig. 2. Utilization of technological progress in web application development.

www.manaraa.com

Miiltidimemional Legacy Aspects of Modernizing Web Based Systems 375

Mainframe Hosl-to-Host Client based Birth of Client-Server Client-Server Multi-tiered _ „ .
/arcliitecture /<Peervto-Peei2/architectures/MWWW / '*°-' '^'*' ')/ <*;™f*™fLXf^^

1980-80 1969* 1980-90 1990 1890+ 1995+ 2000+ 2006 years

Fig. 3. Trends in distributed software architecture development.

Switching between different technological platforms is often accompanied by a
decision to improve system's architecture during migration (see Fig.3).

Software architecture evolves towards multi-tiered applications and SOA [7],
which are meant to be the tools for achieving business flexibility in on-demand solu
tions. However, real-world web-based legacy systems often have data, business and
presentation intertwined, which is often a result of inappropriate development process
and setting aside the principles of software design for the sake of approaching dead
lines.

During migration process, we might want to use a different software engineering
methodology than the one used during development of a legacy system. The will to
reconstruct the system in a different way is rarely the sole reason to migrate. Similar
situation arises with quality management. Migrations are often occasions to introduce
quality management into the software development process. In general quality man
agement can contribute to the fact that the system will not be considered as a legacy
one for a long time.

Web application environments also include a numerous group of quickly evolving
standards that the application should comply with (see Fig.4). Introducing new func
tionalities into application often involves conforming to a certain web standard, eg.
news headlines in RSS. When some web standards supersede others a web applica
tion that does not conform to new standards is often considered legacy. However, in
most cases, wrappers should be a sufficient solution for such problems.

Text W3CHTML , „o , -W3C HTML 4,0 W3C W3C " S S l f P " ™ ' ' , „ K o n
I Documents < ' ' ' /JavaScript , „ „ , . , „ .„, / vm (V M T ;-XHTML , Web 2.0

J jwr th5nww^_ / '*'"" / /-ECMAScnpl y XML ^ XSIT / . g O A p / ^
1990 1993 1995 1997 1998 1999 2000 2004 years

Fig. 4. Evolution of standards for web applications.

When determining the legacy status of an application, we should firstly detennine
its current position on each of these timelines. The distance between the present date
and the latest date corresponding to the desired state of the system is a measure for
the system's legacy level, which will help to determine the need for software devel
opment. If a difference can be seen only in one or two aspects, then perhaps a simple
transition should be reconsidered. If not, developing a complex, component-level
transition strategy is recommended, with carefully planned use of wrapping, migra
tion and re-development techniques.

Another legacy aspect is system interoperability, meaning, that if maintenance
phase changes distort system's communication with other systems, then the other
systems become legacy ones. Such situation is usually unacceptable for most of pri
mary system's users. For example, our e-shop cooperates with another e-shop, which
was forced to change technology platform from ASP.NET to J2EE. Previously, we
used .NET remoting to access another shop's data, now we have to switch to either

www.manaraa.com

376 Hemyk Krmvczyk, Konrad Dusza, Liikasz Budnik, Liikasz Byczkowski

Web Services or Java RMI. In such a case, we have to create new communication
module or wrap an existing one and introduce it into our system. The only way to
avoid or at least postpone interoperability-driven transitions is to develop systems
with high flexibility and extendibility. However, it is a very difficult task in practice.

3 A Solution for Legacy Problems with ERS Example

Transformation types discussed in Section 2, were applied in ERS development as
shown in Table 1. The first implementation of the Endoscopy Recommender System
(ERS) was deployed in 1997 as a standalone application, without using web tech
nologies. The next generations of the system were introduced in 2001 and 2005 re
spectively. Table 1 presents a detailed history of the system along with technologies
employed in each generation of the system and theirs key features.

Table 1. History of ERS development.

Version,
release date
ERS 1, 1997

ERS 2, 2001

ERS 3, 2005

Features

Database of patients and exami
nation data. Reports and statistics
generation.
MST standardization of examina
tion descriptions, client-server
architecture, replication of medi
cal data for reliability improve
ment.
New, three-tiered architecture,
DVD medical data analysis.
security, safety and data integrity
assurance. Addition of new re
ports and other functions re
quested by client.

Used tech
nologies
MS-DOS,
Clipper

Windows and
Linux, PHP4,
MySQL 3.23,
Java 1.2,
Apache 1.2
Windows and
Linux, PHP5,
MySQL 5,
Apache 2,
XML, XSLT,
SOAP

Legacy transformation
approach
none (first ERS version)

re-development (transi
tion to web based plat
form)

DBMS communication
wrapping, inner-system
data-flow migration to
XML,
presentation and busi
ness tier re-development

As shown in Table 1, the system became legacy two times, in 2001 and 2005. The
reasons for transitions were as follows:

1. System requirements were defined incrementally because of extra needs of system
users - physicians.

2. Personnel rotation in system development team of successive versions (always
students of our faculty, each time with better knowledge of new software technol
ogy)

3. Emergence of new web technologies provided means for achieving better imple
mentations of functionalities and higher quality.

Below, we focus on transition from ERS 2001 to ERS 2005. Among different ap
proaches we have decided to use the following one:

1. Begin with architectural changes.

www.manaraa.com

Miihidimensional Legacy Aspects of Modernizing Web Based Systems 3,11

2. Switch to a new technology (writing new source code).
3. Implement new functionalities.

This approach allows us to transform the system into a three-tiered apphcation in
natural way. Medical environment is very volatile, which urged ERS to be highly
flexible and adaptive. Its component architecture was developed mainly to fulfill that
need. Development of a new, properly tiered architecture enabled designing a system
engine based on XML and XSLT processing. Transition to the latest PHP, MySQL
and Apache versions available made it possible to implement a broader set of re
quirements.

The ERS database engine was migrated from MySQLS to the newest MySQLS and
took full advantage of its new DBMS features (see Table 1). All broken interrelations
were copied into separate database. Medical data collected by many years should
never be deleted or discarded. Instead, they should be stored in safe and secure ar
chives - this data is a great source of information. Foreign key constraints were added
- responsibility for foreign key checks was transferred from programmers to DBMS
and is processed automatically without any interference. New ERS uses also trigger
mechanism for consistency checks during e.g. delete operations. Data storage engine
was moved from MylSAM to InnoDB. Transaction support was implemented in the
target system and the new ERS now works in fully transactional mode.

To cope with intertwined business logic tier, our team created a template of the
ERS business logic, which proved very useful in further development. Previously,
business logic of the system was highly integrated with other tiers, which forced
programmers to carefully analyze this aspect and separate respective business func
tions. As a result, an XML file was created, which contained data describing division
of business functionalities into modules and structure of entire system. Later we used
the XML business logic files to automatically generate directory tree, database que
ries and even code templates for the system, which was achieved by building differ
ent sets of XSL transformation sheets. XML business logic files also helped develop
ers to keep references between parts being re-developed and corresponding function
alities in the legacy version of ERS. We found this feature particularly useful when
assuring that the new version meets all functional requirements that the old system
met.

Although the ERS interface turned to be proper for managing functionalities of
fered by the system, and it did not need updating itself, a new system architecture
forced developers to isolate presentation logic from the rest of a system, which was
highly interspersed with business and data tier's code in the previous ERS generation.

Knowledge collected during earlier stages of ERS development helped to decide,
which parts of the system can be transformed and how. Analyses of risk, costs and
benefits have shown that the structure of legacy data in the system should remain
unchanged. What could have been done was the creation of wrappers enabling ac
cessing previous, legacy-structured data-tier in order to migrate to new MySQLS
DBMS with all the latest transaction techniques. The rest of the system was re
developed in correlation with new ERS system architecture. It guaranteed easy modi
fications and expansion, which is highly valued in system user's enviroimient.

Our experience gained during the development of ERS 2005 shows that a method
ology to create transition strategy can be developed and included in a software lifecy-

www.manaraa.com

378 Henryk Krmvczyk, KonradDusza, Lukasz Budnik, Liikasz Byczkowski

cle development. A system becomes legacy one during maintenance phase, when
system's current features no longer satisfy the needs of users and its environment.
Moreover, the legacy state is periodic, and should be expected in every life-cycle
regardless of software engineering techniques and technological frameworks used.
Web applications are even more endangered to legacy issues as the technologies used
in this area of IT are not mature and evolve faster than in other areas.

4 Conclusions

Software life-cycles foresee the needs for smaller changes of software and its re
quirements during different phases and at the same time neglect the legacy issue
caused by both user requirements changes and technological progress. The legacy
boundary is often flexible and the legacy state is proclaimed arbitrarily by business-
related managers regardless of the Ufe-cycle.

In order to conduct a transition from a legacy system to a newly developed one,
one of the three approaches can be adopted both on system and a component level.
These approaches are wrapping, migration and re-development. They differ in terms
of software re-use that can be applied and the effort that has to be committed to the
transition process.

Our work on ERS has shown that further legacy transitions of information systems
are inevitable. However, the integration of the legacy state into our software life-
cycle should reduce the cost of future legacy transition, due to greater flexibility of a
system architecture and design. In this case, previous transition took 18 months, and
the present one - 15 months, measuring from the decision to initiate legacy transition
to deployment of the final product.

References

1. Flawn D, The Legacy Systems Dilemrtia Fujitsu, Legacy Migration,
http://www2.cio.com/consultant/report2337.html

2. Brodie M., Stonebraker M., Migrating Legacy Systems: Gateways, Interfaces and the In
cremental Approach, Morgan Kaufmann Publishers, Inc. USA, 1995

3. Bisbal J., Lawless D., Wu B., Grimson J., Legacy Information System Migration: A Brief
Review of Problems, Solutions and Research Issues, Computer Science Department, Trinity
College, Dublin, Ireland 1999

4. Hassan A. E., Holt R. C. A Lightweight Approach for Migrating Web Frameworks, Soft
ware Architecture Group (SWAG), Department of Computer Science University of Water
loo, Waterloo, Canada 2004

5. Hassan A. E., Holt R. C. A Visual Architectural Approach to Maintaining Web Applica
tions, Software Architecture Group (SWAG), Department of Computer Science University
of Waterloo, Waterloo, Canada 2002

6. BCrawczyk H., Knopa R., Kruk S., Mazurkiewicz A., Zielihski J., Predictive-incremental
strategy of application development, KKIIO 2001, Otwock, Poland

7. OASIS, Reference Model for Service Oriented Architecture, http:// www.oasis-
open.org/committees/download.php/16628/wd-soa-rm-prl .pdf

